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ABSTRACT
A basic task of urban mobility management is the real-time moni-
toring of traffic within key areas of the territory, such as main en-
trances to the city, important attractors and possible bottlenecks.
Some of them are well known areas, while while others can ap-
pear, disappear or simply change during the year, or even during the
week, due for instance to roadworks, accidents and special events
(strikes, demonstrations, concerts, new toll road fares). Especially
in the latter cases, it would be useful to have a traffic monitoring
system able to dynamically adapt to reference areas specified by
the user.

In this paper we propose and study a solution exploiting on-board
location devices in private cars mobility, that continuously trace the
position of the vehicle and periodically communicate it to a central
station. Such vehicles provide a statistical sample of the whole
population, and therefore can be used to compute a summary of
the traffic conditions for the mobility manager. However, the large
mass of information to be transmitted and processed to achieve that
might be too much for a real-time monitoring system, the main
problem being the systematic communication from each vehicle to
a unique, centralized station.

In this work we tackle the problem by adopting the general view
of distributed systems for the computation of a global function,
consisting in minimizing the amount of information communicated
through a careful coordination of the single nodes (vehicles) of the
system. Our approach involves the use of predictive models that
allow the central station to guess (in most cases and within some
given error threshold) the location of the monitored vehicles and
then to estimate the density of key areas without communications
with the nodes.

1. INTRODUCTION
In the context of urban mobility management, a basic task re-

quired by administrators is the monitoring of traffic within a vari-
ety of key locations: main gateways to the city, important attractors
and possible bottlenecks. Some such locations ar well known, and
therefore a monitoring environment can be set up by means of road-
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side sensors (including cameras), although set up and maintenance
costs might be significant for large cities. Other key areas can ap-
pear, disappear or simply change with time, due to seasonality or
special events. For instance roadworks, accidents or events such
a strikes, demonstrations, concerts, new toll-road fares can change
the status of the city, and make some areas more critical than usual.
In these cases, it would be useful to have a traffic monitoring sys-
tem able to dynamically adapt to reference areas specified by the
user.

A solution can come from recent, growing trends in the deploy-
ment of on-board location devices in private cars mobility. Such
devices continuously trace the position of the vehicle, and peri-
odically communicate it to a central station, that stores it. Such
vehicles provide a statistical sample of the whole population, and
therefore can be used to compute a summary of the traffic condi-
tions for the mobility manager. The analytical power of detailed
and massive GPS trajectory in unveiling the patterns of human mo-
bility behavior data has been shown in [1]. However, the large
mass of information to be transmitted and processed to achieve that
might be too much for a real-time monitoring system, the main
problem being the continuous communication from each vehicle to
a unique, centralized station. In this paper, we use a massive tra-
jectory dataset consisting of approx. 1.5 million travels, sampled at
a high rate from more than 40,000 private cars tracked for a month
in a 50 square km area in Tuscany, Italy — a dataset which clearly
illustrates the computational and economic challenge of continuous
transmission to a central server.

Recently, safe zones were introduced as a principled mechanism
for the efficient distributed computation and monitoring of a global
aggregate function, consisting in minimizing the amount of infor-
mation communicated through a careful coordination of the indi-
vidual nodes (vehicles, in our domain) [2, 3]. The basic idea is
that each node is instructed on how to check locally whether its
changes of position can have a relevant impact on the global func-
tion, or not. In the negative case, no communication is needed. Of
course, that implies a reasonable definition of relevant impact, as
well as some computational capability at the node level to check it.
The safe zone idea, realized through clever computational geomet-
ric methods, has the potential of drastically reducing the number
of communications between the distributed nodes and the central
station, and we checked empirically that this is the case also in our
urban mobility setting.

In this paper, we ask the following question: can the amount of
needed data transmissions from distributed cars to central station
be further reduced by taking into account the regularity of human
mobility? We know that the way people move is highly predictable:
we tend to follow daily routines, dictated by our social constraints,
so that the degree of entropy of our whereabouts very small, as



shown by many recent empirical studies on large scale data on hu-
man mobility patterns and profiles [4, 5, 6]. Our idea is conse-
quential: if human travel is often systematic and repetitive, we can
exploit such regularity to avoid transmitting data whenever we fol-
low our routines, and instead transmit when we are movements are
outside our typical behavior. In this sense, our aim is to exploit the
fact that the distributed system of cars and central station is techno-
social, and therefore it follows not only general laws dictated by
geometry and mathematics, but also statistical laws dictated by hu-
man behavior. We want to use both properties to optimize the dis-
tributed computation, and empirically measure the obtained results
over realistic scenario. We describe in this paper how to achieve
this goal based on mining different kinds of mobility profiles from
the GPS trajectory data, and show how this novel data-driven ap-
proach significantly improves over the safe-zone approach.

2. RELATED WORKS
The topic of this paper lies at the crossroad of two research fields:

the distributed computation of global functions (a specific instance
of which is treat in this work), and the computation of predictive
models for mobility.

The global function considered in this paper is essentially a sum
of variables, each of them derived from the location of an object.
Existing works in literature provide solutions for this case, for in-
stance [2] deals with the problem of checking whether a linear sum
of variables crosses a given threshold, and develops conditions that
allow the central node to correctly test the threshold check even if
some node does not communicate its latest values. More recently,
also some general approach for very general classes of functions
have been proposed in [3], essentially allowing any function that
can be expressed as f(x̄), where x̄ is the average of the individ-
ual vectors of variables (one vector for each node of the network)
and f is any function. The latter is based on the concept of Safe
Zones, i.e. sets of values that an individual vector of variables can
assume without affecting the global function significantly, i.e. as
long as the vector lies within its Safe Zone, the global function is
guaranteed not to cross the threshold even if the coordinator still
uses older values of the vector. The Safe Zone approach works
particularly well when the individual vectors are expected not to
change too much in time, while they might be less effective when
significant variations are common. In the specific context consid-
ered in this paper, the individual vectors are locations of vehicles
and derived quantities, which typically can have large variations
during the day, therefore the Safe Zone approach is expected meet
efficiency issues. Similar considerations have been performed in
[7], in the area of distributed query tracking. Their basic idea con-
sists in combining data compression methods for limiting the size
of the transmitted data (namely, sketches) with a predictive model
that allows to avoid communication whenever a node behaves as
expected. In our work we try to merge the Safe Zones ideas (though
limited to the simplest case, since we deal with a linear function)
with the use of predictive models suitable for mobility data.

The kind of predictive model required by our application should
describe the expected mobility of a moving object throughout a typ-
ical day. Therefore, we are interested in extracting periodic patterns
of movements, that link the routes followed with their time within
the period (e.g. the hour of the day). In literature, the work in [8]
approaches this problem by partitioning the period (e.g. the day)
into time slots (e.g. hours), and defining a periodic pattern as a de-
scription of a representative location for each time slot (or * if no
such representative can be found). Another approach, described in
[5], consists in looking for typical trips, i.e. trips that repeat them-
selves approximately several time in the history of an individual,

Figure 1: Example of vehicle density estimation for a reference
point RP1, on a single dimension, with a Gaussian kernel.

thus considering whole routes. The basic analytical methods derive
from trajectory mining tools previously developed and combined
into the M-Atlas framework [1]. Both approaches – location-based
and route-based – are considered in this paper, adapted to our con-
text and experimentally compared.

3. PROBLEM DEFINITION
Our reference application consists in evaluating the density of

vehicles in correspondence of a given set RP of nRP points in
space, called reference points. In particular, density is estimated
through a kernel-based approach, i.e., the density in a point is com-
puted by counting all vehicles in space, yet weighted according to
their distance from the point.

The application involves a central controller that computes (or
estimates) the vehicle densities, and a set of nodes, each repre-
senting a vehicle. Each node receives a stream of location updates
(coming from the on-board GPS device) and communicates the new
location to the controller whenever needed to keep the global den-
sity estimates correct.

Definition 1 (DMP: DENSITY MONITORING PROBLEM).
Given a set RP = {RP1, . . . , RPnRP } of nRP reference points,
a set V = {V1, . . . , VnV } of vehicles and a kernel function K(.),
the density monitoring problem consists in computing, at each time
instant, the function fDMP (V ), defined as fDMP (V ) = [K1, . . . ,
KnRP ]T , where:

∀1 ≤ i ≤ nRP . Ki =

nV∑
j=1

K(V xy
j −RP xy

i ) (1)

Here, V xy
j ∈ R2 and RP xy

i ∈ R2 represent, respectively, the
actual position of vehicle Vj and the position of reference point
RPi.

In this paper the kernel function used is a Gaussian as shown in
Figure 1 where the the DMP for a single reference point is repre-
sented as sum of the contributions given by six vehicles.

Whenever the number nV of vehicles or their location update
frequency (or both) reach high values, it is necessary to trade the
exactness of the estimation defined above with a reduction of in-
formation exchange and processing. The loss of precision, in our
context, is bounded by a parameter ε, that represents the deviation
from the exact output for the DMP.

Definition 2 (ADMP: APPROXIMATE DMP). Given a DMP
with reference pointsRP = {RP1, . . . , RPnRP }, vehicle set V =



{V1, . . . , VnV } and kernel function K(.), and given an error tol-
erance parameter ε, the approximate density monitoring problem
consists in computing, at each time instant, a function fADMP (V )
that approximates fDMP . In particular, given the following error
function:

error(KA,K) =
nRP
max
i=1
|KA

i −Ki|

where K = fDMP (V ) and KA = fADMP (V ), it always holds
that error(fADMP (V ), fDMP (V )) ≤ ε.

In other words, given an error threshold ε we require that the
density estimate of each single RP provided by fADMP differs at
most of ε from the corresponding value provided by fDMP .

Solving a DMP or a ADMP consists essentially in defining a
process able to satisfy their requirements in every possible status
and evolution of the overall system. The latter aspect can be mod-
eled by a stream of status changes that each node senses during the
monitoring period; the “process”, then, basically defines a proto-
col used by nodes and controller to communicate only the essential
information needed to satisfy the requirements of the (A)DMP.

In this paper several different ADMP solutions will be explored,
in order to evaluate the impact of applying different levels of in-
telligence (in particular, learning from history) and usage of back-
ground knowledge.

4. BASIC APPROACHES FOR DISTRIBUTED
DENSITY MAP MONITORING

Level 0: Communicate all
The trivial solution to the ADMP problem consists in having all
the nodes sending an update to the controller for each update they
receive. Obviously, that allows the controller to produce a perfect
estimate of the global function (it actually yields a solution for the
DMP problem, equivalent to ε = 0), since it always knows the ac-
tual value of the variables it involves, at the price of communicating
everything.

Level 1: static Safe Zones
This solution follows strictly the ideas based on Safe Zones [3], and
therefore assumes that most objects are static or most of the time
they move around some specific points in space, such as the home
or work location. The basic idea, then, is to define a default location
for each object v, and when no update arrives to the controller, it
assumes that v is inside its default location.

More concretely, through analysis of historical data each node
can be assigned to an optimal location that is used as its default po-
sition; then, basically the controller computes densities assuming
that each node lies in its default position. Each node has assigned
a geographical area such that, as long as it moves within that area
the value computed by the controller is still a good approximation
(w.r.t. the error threshold ε provided as parameter of the applica-
tion). When the node moves outside its given area, it communicates
the location update to the controller, which will use it to compute a
correct estimation.

However, the context of mobility is characterized by massive and
rapid changes in the data, since locations are highly dynamic, mak-
ing this approach inadequate. For this reason, we will not further
consider it, and instead will propose a variant that (in principle)
better fits our scenario.

Level 2: adaptive Safe Zones
The basic assumption behind this approach is that the objects are
not necessarily static, yet their movements are relatively slow. As

an effect, when an object visits a given location, its associated re-
gion (see description of static Safe Zones above) will most likely
contain several of the next locations of the object, yet no single
location is able to capture a large part of the mobility of the object.

The protocol works as for static Safe Zones, but when an update
must be communicated, the node is assigned to a new default loca-
tion and to its corresponding geographical area, computed around
its most recent measured location. Recomputing a new region (es-
sentially, a new Safe Zone) is made possible and easy by the lin-
earity of the global function to monitor (a sum of contributions),
which enables to modify the Safe Zone of a node without compro-
mising those of other objects. This kind of approach is much more
problematic in contexts where the global function is more com-
plex, since in those cases a change to a single object might involve
changes to several other objects to reach an overall balance.

5. DISTRIBUTED DENSITY MAP MONITOR-
ING BASED ON PREDICTIVE MODELS

Since recent studies on human mobility claim that the latter is
dominated by regular movements and therefore is highly predictable
[4], here we analyze a segment of recent history of each node, in
order to identify its regularities and use them as models to predict
their locations in the next future. In particular, two variants of this
idea are considered:

Most Frequent Location (MFL): we assume that the average user
tends to visit (or cross) everyday the same places at the same
hour of the day, therefore we look for single spatio-temporal
locations that occur frequently, i.e., in many different days
of the period. In this approach we do not try to link the
frequent locations of a node, therefore the predictive model
might contain consecutive sequence of locations that do not
form consistent trajectories.

Mobility Profiles: here we make a stronger assumption, i.e. that
the user tends to repeat the same trips everyday (home-to-
work, and vice versa, for instance), thus involving an higher
level concept of frequent trip, that requires a coherent se-
quence of spatio-temporal locations.

Both approaches create a typical daily schedule of each user,
possibly with gaps for those moments of the day where the his-
torical data did not reach a consensus on which location/trip to as-
sociate to them. The protocol, then, consists in letting the controller
use at each instant the location predicted by the predictive model.
In case of gaps (therefore no suggestion is provided by the predic-
tive model) a default model is applied whose prediction is equal
to the last known real location of the object. This is equivalent to
adopt an adaptive Safe Zones solution limited to the gaps.

We remark that the Mobility Profiles approach implicitly adds a
coherence constraint in the predictive model generation, therefore
it will tend to produce predictive models with more gaps than the
Most Frequent Location approach, yet the predictions provided are
more likely to be reliable. Essentially, here we trading coverage for
accuracy (to use information retrieval terms), and it is not clear a
priori which solution might yield the best trade-off.

We collectively name the approaches mentioned above as proto-
cols of the family Level 3: predictive models. In the following we
describe the extraction and usage of the two variants.



5.1 Level 3.1: Most Frequent Location

5.1.1 MFL definition
In order to exploit the mobility habits of people, we start to build

schedules of expected behaviors by using their most frequent vis-
ited locations. To do so, we need to acquire mobility information
during a training period where the learning of habits will take place,
then define frequency thresholds and build for each user a schedule
that associates each time slot of the day to the most frequent loca-
tion that occurred in that time slot throughout the training period,
filtering out those locations that have an insufficient frequency w.r.t.
the given threshold. The kind of model built with this approach is
similar to the one described in [8].

Definition 3 (MFL USER DAILY SCHEDULE). A MFL sched-
ule is defined as the time-ordered set of the most frequent locations
visited by an user within a specified observation periods. The daily
schedule is discretized in time slots of equal durations.

In order to identify what are the most frequent locations, de-
fined by their GPS coordinates, we impose two constraints: (i) a
time constraint, (ii) a spatial constraint. These two information are
needed to build and align the daily schedule of a user.

Definition 4 (TIME SLOTS). To determine to which time in-
terval belong each single location we split each day in several slots
of the same size. We define ∆t as the time span that identifies the
width of time frame reserved to each slot.

Once defined a set of time slots we assign to each of them the set
of locations visited by the user during the time slot. From this set
we want to obtain a single representative location. A wide set of
alternatives are possible to decide which location to choose as rep-
resentative of the set (compute the center of mass, took the centroid,
etc.). In this paper we choose to maintain the most dense location,
i.e. the location that has the largest number of observations close to
itself.

Definition 5 (SPATIAL RADIUS, NEIGHBORS). Given a thresh-
old ∆s, called spatial radius, two locationsA andB are considered
neighbors if ||A− B||∞ ≤ ∆s, i.e. all their coordinates differs at
most by ∆s.

5.1.2 MFL extraction
Once we have for a specified user a complete schedule of the

visited locations during different days we need to synthesize a gen-
eral schedule. In order to do it, we align all the daily schedules by
collecting for each time slot all the observed locations that corre-
spond to the time slot over the whole period; then, we calculate the
most frequent location for each time slot. To avoid situations where
the most frequent location appears only in a small fraction of the
analyzed period, we impose a minimum support threshold.

Once this model is built we can use it as a proxy for the user
mobility behaviour to the extent of predicting the location in which
the user will be at a given time.

5.1.3 MFL-based prediction
The prediction phase rely on a direct query to the MFL schedule

for the desired user. Given a query, defined as couple (u, t) com-
posed by the user u and a timestamp t, we map t into the relative
time slot and retrieve the MFL for the user u in that time slot, if
it is defined. If a MFL for timestamp t does not exist, we apply
a default model, that always suggests the last known location (i.e.,
the last one communicated to the controller).

5.2 Level 3.2: Mobility Profiles

5.2.1 Mobility profiles definition
We recall the concepts introduced in [5] where the user’s his-

tory is defined as ordered sequence of spatio-temporal points H =
〈p1 . . . pn〉 where pi = (x, y, t) and x, y are spatial coordinates
and t is an absolute timepoint. This history contains different trips
made by the user, therefore in order to distinguish between them we
need to detect when a user stops for a while in a place. This points
in the stream will correspond to the end of a trip and the beginning
of the next one:

Definition 6 (USER’S TRIPS). Given the history H of a user
and the thresholds thstop

spatial and thstop
temporal, a potential stop is de-

fined as a maximal subsequence S of the user’s history H where
the points remain within a spatial area for a certain period of time:
S = 〈pm . . . pk〉 |0 < m ≤ k ≤ n ∧ ∀m≤i≤kDist(pm, pi) ≤
thstop

spatial ∧ Dur(pm, pk) ≥ thstop
temporal. Finally we define a trip

as the subsequence T of the user’s history H between two consec-
utive stops in the ordered set S or between a stop and the first/last
point of H .

where Dist is the Euclidean distance function defined between the
spatial coordinates of the points, and Dur is the difference in the
temporal coordinates of the points. Our objective is to use the user’s
trips in order to find his/her routine behaviors, this can be done
grouping together the trips using a spatio-temporal distance func-
tion and extracting the medoid trip:

Definition 7 (ROUTINE). Given a trip group g with at least
thsupp elements and the distance function δ used to compute it, its
routine is defined as the medoid of the set, i.e.:

routine(g, δ) = arg min
t∈g

∑
t′∈g\{t}

δ(t, t′)

where thsupp is the minimum size threshold used to reeve small
groups which are not considered useful. Now we are ready to define
the users mobility profile as the set of routine discovered over the
history of the user:

Definition 8 (MOBILITY PROFILE). Given a set of trip groups
G of a user and the distance function δ used to compute them, the
user’s mobility profile is defined as his/her corresponding set of
routines:

profile(G, δ) = {routine(g, δ) | g ∈ G}

The mobility profile in other word represents a summarization
of the movements of the user discarding the small variations which
appear occasionally in his history.

5.2.2 Mobility profiles extraction
The extraction of mobility profiles from the user history is imple-

mented as a sequence of modules which realizes the steps described
above: Stop detection, Trip generation, T-Clustering equipped with
a spatio-temporal function called Synch Route Similarity. The first
module analyzes the user’s history checking if the spatial distance
between two consecutive points is lower than the threshold thstop

spatial,
when this happens the modules incrementally checks, and eventu-
ally stores, the following points until the constraint is not satis-
fied anymore. At the end of this process the module checks if the
the sequences found satisfy also the temporal constraint using the
thstop

temporal threshold, if this is satisfied the sequence will be con-
sidered as a stop for the user. The second module builds the trip



Figure 2: An example of mobility profile extraction: (a) The entire set of trips of a user, (b,c) the two clusters extracted, and (d) the
remaining trips which are not periodic.

as sub-sequences of points between the begin and the first stop,
each two consecutive stops and between the last and the end of
the history. The last module runs a density-based algorithm called
T-Clustering [9] using a spatio-temporal distance DSRS which is
a slight modification of the Route Similarity. This distance func-
tion starts comparing the initial timepoints of the two trips and it
the temporal distance between the two are more than a give thresh-
old (i.e. one hour) it returns an infinite distance without any fur-
ther computation, otherwise it returns the distance computed as the
route similarity. To obtain the clusters the T-Clustering algorithm
checks if the following predicate is satisfied:

DSRS(t1, t2) ≤ (t1.lentgh+ t2.length) ∗ cPRadius

where cPRadius is a the Spatial Profile Radius representing the tol-
erance used in the profile construction.

At the end of the process the clusters are filtered by their size,
defined as number of trips, using the thsupp threshold. Finally,
from each survived clusters a medoid is extracted and grouped ob-
taining the mobility profile of the user. In Figure 2 a real example
is presented: here the user’s trips are shown (a) including both the
systematic and occasional ones, in (b) and (c) the two clusters ex-
tracted are presented showing a group of trips which are similar and
synchronous, and in (d) the other trips which are the occasional
movements that will be not considered. It is important to notice
how the two clusters are very similar but reversed in the direction,
this is usual due the fact that a big percentage of the users have two
main reasons to move: going from home to work and viceversa.

5.2.3 Mobility profile-based prediction

Figure 3: A profile composed by three routines. Only part of
the day is covered, while holes are filled by the default model

Having extracted the user’s mobility profile, we want to use it to
predict the user’s position at a certain time. It is important to notice
that a mobility profile does not necessarily cover the whole daily
schedule of a user. Let consider the two possible cases shown in

Fig.3: (i) the prediction is made for the time instant t1, correspond-
ing to a period of the day where the profile is defined, and (ii) the
prediction is made for the time instant t2 corresponding to a period
of the day where the profile is not defined.

In the first case the prediction will be the spatial interpolation be-
tween the two temporally closest points which surround t1, namely
p1 and p2. In the other case the prediction will be the last known
point of the routine preceding temporally t2, namely p3. This corre-
sponds to adopt a default model that always suggests the last known
location, as done for MFL.

6. EXPERIMENTS
In this section we evaluate the different approaches presented in

the paper, measuring the communications they save over the trivial
protocol (“communicate all”).

6.1 Dataset description
The dataset used in the following experiments is produced by a

set of 40,000 cars, which represents the 2% of circulating cars in
the coastal area of Tuscany. These points were tracked using GPS
receivers with a sampling rate of 30s and a positioning system error
of 10-20m in normal conditions over a period 5 weeks. The area
covers a large territory with mixed land usages (residential areas,
industrial zones, countryside, suburbs, etc.). The dataset was col-
lected by Octotelematics S.p.A.[10], and a small sample is shown
in Figure 4. Previous experiences on this data source (e.g. [1])
provided strong evidence of its validity and representativeness.

6.2 Experiment setup
A crucial aspect of the application is the position of the RPs in

space. In order to test the effectiveness of the methods on a real
scenario, we decided to use the positions of a set actual sensors
used by the mobility agency in Tuscany, placed on the main gates
of the city of Pisa plus one over the main bridge of the city center
and two on two important neighboring towns. In Fig.5 the complete
set of sensors is shown, and in Fig.6 a detail of Pisa is shown where
each entrance of the city is monitored. The physical devices placed
on the territory are permanent sensors based on laser technology,
which can count the number and estimate the speed of cars passing
nearby.

The testing of the methods presented in this paper requires to
consider the following kinds of parameters:

• data-dependent parameters: in particular, we consider the
sampling rate of the input GPS data in terms of average time



Figure 4: Sample of the dataset used for experiments

Figure 5: Location of RPs adopted in the experiments, and
buffers representing kernel widths for the density computation

Figure 6: A detailed view of the sensors and the focal area in
the city of Pisa

gap between consecutive location updates received by the ve-
hicles. Where not explicitly mentioned, the sampling rate
will be set to the default value of one point every 5 minutes
(average);

• application-dependent: beside the set of RPs, which was cho-
sen and fixed above, the application requires to specify (i) the
width of the kernel adopted in computing the density over
each RP, and (ii) the maximum (absolute) error tolerated in
computing such densities. The width of the kernel is ex-
pressed as the distance for the vehicle at which its weight in

the density computation is equal to 0.1. Where not explicitly
mentioned, such width is set to 4 km. The error threshold,
instead, is set to 5% of the overall average density of all RPs;

• predictive model-dependent: each predictive model is built
on the base of its own parameters. In particular, we will
explore the impact of the model spatial radius used, which
defines how accurate must be the model. The lower is the ra-
dius, the higher is the accuracy but also the higher is the num-
ber of gaps in the model, since it is more difficult to find sat-
isfactory predictive models. Where not explicitly mentioned,
the spatial radius for the Most Frequent Location model is set
to 1 km, and the Profile spatial radius is set to 0.3. Moreover,
the temporal granularity adopted in MFL (i.e. the ∆t used
to define time slots) is set to the double of the data sampling
rate, in order to have on average two points for each time
slot.

In the following sections we will study the impact of the ap-
proaches proposed, and provide some spatial exploration of the re-
sults.

6.3 Data sampling rate
In this section we present an overall study of the performances

of the system using the different methods discussed in the paper,
compared against the trivial protocol Level 0 (“communicate all”).
In Fig.7 we show the communication rates varying the sampling
rate of the data:

Adaptive SZ : the increasing trend shows that the adaptive Save
Zones solution is affected by the sampling rate. Indeed, longer
temporal gaps between location updates means an higher spa-
tial distance between them, rising the probability of crossing
the actual Safe Zone, and therefore requiring to communicate
and update the Safe Zone more frequently;

MFL : we can see that the communication rate increases very
quickly, due the fact that with an higher sampling rate the
method cannot find (dense) groups in the time intervals. This
affects mostly the MFL models of users with a small number
of points, which become less stable or disappear completely;

Profiles : the Profiles-based solution appears extremely stable while
changing the sampling rate, thanks to the fact that it tries to
find a systematic whole trip of the user, with the result that
the profiles which are extracted with different sampling rates
are composed by less points but maintain their semantics, i.e.
they still describe the same trip (though less accurately).

6.4 Application-dependent parameters
The impact of these parameters is very regular. Therefore, due

to space limitation, we simply summarize their overall effect.
The width of the kernel (expressed as a distance, as described

above) was studied in the range of values between 1 km and 10 km.
In all methods applied, the communications increase monotonically
with the kernel width.

Similarly, the density error threshold was studied in the range
of values between 1% and 10% of the overall average of densities
over all RPs. In all methods applied, the communications decrease
monotonically with the error.

6.5 Model-dependent parameters: MFL
Fig.8 shows the number of MFL models created while changing

the spatial radius parameter, hence the number of users which has a



Figure 7: Overall analysis of the four methods varying the sam-
pling rate of the data.

Figure 8: Number of MFL models created by the nodes using
different tolerance values.

frequent behavior in at least a time interval. The trend is clearly in-
creasing and tends to reach saturation. However, as shown in Fig.9,
this does not mean that the performances of the method increase as
well, in fact the total communication rate slightly increases with in-
creasing tolerances, highlighting the fact that the MFL models cre-
ated are not good in the prediction. The figure also shows the ratio
of updates for which MFL could be applied (i.e. MFL provided a
prediction) with success, thus saving a communication. Similarly,
it shows the ratio of updates for which MFL could not apply, yet
the default model successfully avoided the communication. We can
see that the two ratios are rather symmetric, therefore resulting in
overall very stable communication savings.

6.6 Model-dependent parameters: Profiles
In this section we present the performances obtained using the

Profiles approach. As described in Section 5.2 here during the ini-
tial phase each node builds a profile and sends it to the controller.
Then, when the system starts, the nodes check if their actual posi-
tions are coherent with their profiles. If not, they communicate to
the controller, otherwise nothing is communicated, since the con-
troller can predict the position using the profiles. In Fig.10 we show
how the Profile spatial radius value changes the number of profiles
extracted during the initialization phase: increasing the radius the
number of profiles increases, i.e. the number of nodes who have a
profile. Indeed, higher radii make the similarity between the user’s
trips less strict, thus making the formation of groups and profiles
easier. It is interesting to notice how the number have a big in-
creasing when the radius passes from 0.3 to 0.5 detecting a crucial

Figure 9: MFL performances compared to adaptive Safe Zones
approach and the communication saved by MFL and default
model.

Figure 10: Number of profiles created by the nodes using dif-
ferent tolerance values.

Figure 11: Profiles and adaptive Safe Zones performances and
communication saved by profiles and default model.

point for the profile construction. Having more profiles does not
mean to have better performances. Indeed, loose profiles lead to
loose predictions. This can be seen in the Fig.11 where the perfor-
mances of the system remain almost the same even if the number of
nodes with a profile increases. Moreover, with radius equal to 0.3
the performances decrease, meaning that a critical point is reached
and the profiles become too loose and the errors in profile predic-
tion becomes higher. If Fig.11 we compare the performances of the
profile approach against the adaptive Safe Zones. As we can see,



Profiles gain a saving of 6.5%, meaning that the concept of profiles
actually produces significant benefits. More in detail, analyzing the
communications saved by the profiles and the default model (used
when there is no profile to apply) we can see that profiles tend to
replace the default model, improving the overall performances.

6.6.1 Spatial exploration of results
In this section, we provide an exploration of the performance

results on the map. Fig.12 shows where the relative errors occur
during the execution of the system. The color scale goes from red,
representing a big percentage of errors, to blue which represents a
small percentage of errors. Clearly, the error percentage is affected
by the proximity to the RPs, in fact the error threshold is more likely
exceeded in proximity of each focal point where the kernel function
reaches the maximum. In other words, in those areas a small error
in the location prediction leads to a big error on the density com-
putation, therefore causing more likely a communication from the
node to the controller. Fig.13 shows a detailed view of the city at

Figure 12: Distribution of relative errors occurred during the
system execution.

Figure 13: A detailed view of the relative error distribution in
Pisa city using a smaller granularity.

a finer granularity, which is covered by several RPs. It is clear how
the distribution of the errors in space is not homogeneous, in fact
the city center (where an RP is placed) seems to be less affected by
errors than the main gates and their relative roads.

7. CONCLUSIONS
In this work we developed and compared several approaches to

the problem of computing population density over key areas in a
distributed context, trying to reduce as much as possible the com-
munication required. The approaches mainly differed for the way
they tried to exploit the recent history of the moving objects in-
volved, in some cases by estimating an optimal static default loca-
tion for each object, in other cases by learning their mobility habits
and exploiting them as prediction means. The experimental com-
parisons performed provided several insights on the effectiveness
of each approach, in many cases with surprising outcomes.

Several new questions and open issues arose during the develop-
ment of this work. We mention three of them: (i) since the compu-
tation involves potentially sensible information about individuals,
can the proposed framework be made privacy-preserving? (ii) are
there parts of the map more difficult to "learn"? E.g. highways
are expected to be difficult, due to the high presence of occasional
trips and occasional passers-by; (iii) if taken collectively, individual
non-systematic behaviors might form typical paths, e.g. vehicles on
the highways: how to integrate them in the framework? Aspects to
consider on this way include the fact that typical paths cannot be as-
sociated to the vehicle ID (therefore there must be a different way
to choose a "model" for a given model-less vehicle, such as prefix
match), and to mine typical paths it is needed a centralized compu-
tation, therefore nodes might send to the controller, for instance, all
trips not described by a profile.
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