PAP 2017:
Personal Analytics
and Privacy

1st International Workshop on Personal Analytics and Privacy
(In conjunction with ECML PKDD 2017)

Skopje, Macedonia, Monday 18th September 2017

Call For Papers


The post-proceedings of PAP 2017 the First International Workshop on Personal Analytics and Privacy Held in Conjunction with ECML PKDD 2017, Skopje, Macedonia, September 18, 2017 (LNCS 10708) is now available online. You can find information about it here or access the online version here.

Call for Papers

In the era of Big Data, every single user of our hyper-connected world leaves behind a myriad of digital breadcrumbs while performing her daily activities. Nowadays, a simple smartphone enables each one of us to browse the Web, listen to music on online musical services, post messages on social networks, perform online shopping, acquire images and record our geographical locations. This enormous amount of personal data can be exploited to improve the lifestyle of each individual by extracting, analyzing and exploiting user's behavioral patterns like the items frequently purchased, the routinary movements, the favorite sequence of songs listened, etc. Up to now, the highly valuable personal patterns able to predict human behavior can only be extracted by big companies, which employ this information mainly to improve marketing strategies. This organization-centric model does not empower to take full advantage of the possibility of knowledge extraction offered by personal data, mainly because each company has only a limited view on individuals that is restricted to the type of data for which the company provides services. Moreover, users have a very limited capability to control and exploit their personal data. Although some user-centric models like the Personal Information Management System and the Personal Data Store are emerging, currently there is still a significant lack in terms of algorithms and models specifically designed to capture the knowledge from individual data and to ensure privacy protection in a user-centric scenario.

Personal data analytics and individual privacy protection are the key elements to leverage nowadays services to a new type of systems. The availability of personal analytics tools able to extract hidden knowledge from individual data while protecting the privacy right can help the society to move from organization-centric systems to user-centric systems, where the user is the owner of her personal data and is able to manage, understand, exploit, control and share her own data and the knowledge deliverable from them in a completely safe way.

The purpose of PAP is to encourage principled research that will lead to the advancement of personal data analytics, personal services development, privacy, data protection and privacy risk assessment. The workshop will seek top-quality submissions addressing important issues related to personal analytics, personal data mining and privacy in the context where real individual data (spatio-temporal data, call details records, tweets, mobility data, transactional data, social networking data, etc.) are used for developing a data-driven service, for realizing a social study aimed at understanding nowadays society, and for publication purposes. Papers can present research results in any of the themes of interest for the workshop as well as application experiences, tools and promising preliminary ideas. However, papers dealing with synergistic approaches that integrate privacy requirements and protection in the personal data analytics approach are especially welcome.

Authors are invited to submit original research or position papers proposing novel methods or analyzing existing techniques on novel datasets on any relevant topic. These can either be normal or short papers. Short papers can discuss new ideas which are at an early stage of development and which have not yet been thoroughly evaluated. Topics of interest to the workshop include, but are not limited to, the following:

• Personal model summarizing the user's behaviors
• Personal data and knowledge management (databases, software, formats)
• Personal data collection (crawling, storage, compression)
• Personal data integration
• Personal data store and personal information management aystems models
• Parameter-free and auto-adaptive methodologies for personal analytics
• Novel indicators measuring personal behavior
• Individual vs. collective models
• Privacy-preserving mining algorithm
• Privacy-preserving individual data sharing
• Privacy risk assessment
• Privacy and anonymity in collective services
• Information (data/patterns) hiding
• Privacy in pervasive/ubiquitous systems
• Security and privacy metrics
• Personal data protection and law enforcement
• Balancing privacy and quality of the service/analysis
• Case study analysis and experiments on real individual data

Download the call for paper of




Electronic submissions will be handled via Easychair.

Abstracts need to be registered by Monday, June 26, 2017 and full submissions will be accepted until Monday, July 3, 2017.

Papers must be written in English and formatted according to the Springer Lecture Notes in Computer Science (LNCS) guidelines following the style of the main conference (format).

The maximum length of either regular (research or position) papers is 12 pages in this format, and it is 6 pages for short (research or position) papers. Overlength papers will be rejected without review (papers with smaller page margins and font sizes than specified in the author instructions and set in the style files will also be treated as overlength).

Authors who submit their work to PAP2017 commit themselves to present their paper at the workshop in case of acceptance. PAP2017 considers the author list submitted with the paper as final. No additions or deletions to this list may be made after paper submission, either during the review period, or in case of acceptance, at the final camera ready stage.

Condition for inclusion in the post-proceedings is that at least one of the co-authors has presented the paper at the workshop. Pre-proceedings will be available online before the workshop. A special issue of a relevant international journal with extended versions of selected papers is under consideration.

All accepted papers will be published as post-proceedings in LNCSI and included in the series name Lecture Notes in Computer Science.

Mountain View

All papers for PAP2017 must be submitted by using the on-line submission system via: EasyChair.

Important Dates

Important Dates

Abstract Submission deadline: Monday, June 26, 2017

Paper Submission deadline: Monday, July 3, 2017

Extended Abstract and Paper Submission deadline: Monday, July 10, 2017

Accept/Reject Notification: Monday, July 24, 2017

Camera-ready deadline: Monday, August 7, 2017

Workshop: Monday 18 September 2017






Workshop Overview

Invited Talk: The Rise of Decentralized Personal Data Markets
Bruno Lepri

10:00Your Privacy, My Privacy? On Leakage Risk Assessment in Online Social Networks
Ruggero G. Pensa and Livio Bioglio



11:00Assessing Privacy Risk in Retail Data
Roberto Pellungrini, Francesca Pratesi and Luca Pappalardo
11:30Differential Privacy and Neural Networks
Giuseppe Manco and Giuseppe Pirrò
12:00Co-clustering for differentially private synthetic data generation
Tarek Benkhelif, Françoise Fessant, Fabrice Clérot and Guillaume Raschia



Invited Talk: Personal Knowledge Management Systems
Serge Abiteboul

14:40From Self-Data to Self-Preferences: Towards Preference Elicitation in Personal Information Management Systems
Tristan Allard, Tassadit Bouadi, Joris Duguépéroux and Virginie Sans
15:10Evaluating the impact of friends in predicting user's availability in Online Social Networks
Andrea De Salve, Paolo Mori and Laura Ricci


16:00Movement Behaviour Recognition for Water Activities
Mirco Nanni, Roberto Trasarti and Fosca Giannotti
16:30Guess the movie - Linking Facebook pages to IMDb movies
Paolo Fornacciari, Barbara Guidi, Monica Mordonini, Jacopo Orlandini, Laura Sani and Michele Tomaiuolo
17:00Research on Online Digital Cultures - Community Extraction and Analysis by Markov and k-Means Clustering
Tobias Blanke, Giles Greenway, Mark Coté and Jennifer Pybus


Venue: Aleksandar Palace, Skopje, Macedonia

Additional information about the location can be found at
the main conference web page: ECML PKDD 2017



For any additional questions you can contact

All inquires should be sent to

This workshop is partially supported by the European Community H2020 Program under the funding scheme INFRAIA-1-2014-2015: Research Infrastructures, grant agreement 654024 SoBigData.

Mountain View