Publications

You are here

Export 5 results:
Author Title Type [ Year(Asc)]
2018
G. Amato, Candela, L., Castelli, D., Esuli, A., Falchi, F., Gennaro, C., Giannotti, F., Monreale, A., Nanni, M., Pagano, P., Pappalardo, L., Pedreschi, D., Pratesi, F., Rabitti, F., Rinzivillo, S., Rossetti, G., Ruggieri, S., Sebastiani, F., and Tesconi, M., How Data Mining and Machine Learning Evolved from Relational Data Base to Data Science, in A Comprehensive Guide Through the Italian Database Research Over the Last 25 Years, Springer International Publishing, 2018, pp. 287–306.
L. Pollacci, Guidotti, R., Rossetti, G., Giannotti, F., and Pedreschi, D., The italian music superdiversity, Multimedia Tools and Applications, pp. 1–23, 2018.
R. Guidotti, Monreale, A., Ruggieri, S., Pedreschi, D., Turini, F., and Giannotti, F., Local Rule-Based Explanations of Black Box Decision Systems, 2018.
G. Rossetti, Milli, L., Rinzivillo, S., Sirbu, A., Pedreschi, D., and Giannotti, F., NDlib: a python library to model and analyze diffusion processes over complex networks, International Journal of Data Science and Analytics, vol. 5, pp. 61–79, 2018.
D. Pedreschi, Giannotti, F., Guidotti, R., Monreale, A., Pappalardo, L., Ruggieri, S., and Turini, F., Open the Black Box Data-Driven Explanation of Black Box Decision Systems, 2018.
R. Guidotti, Rossetti, G., Pappalardo, L., Giannotti, F., and Pedreschi, D., Personalized Market Basket Prediction with Temporal Annotated Recurring Sequences, IEEE Transactions on Knowledge and Data Engineering, 2018.
R. Pellungrini, Monreale, A., and Guidotti, R., Privacy Risk for Individual Basket Patterns, in ECML PKDD 2018 Workshops - MIDAS 2018 and PAP 2018, Dublin, Ireland, September 10-14, 2018, Proceedings, 2018.
F. Pratesi, Monreale, A., Trasarti, R., Giannotti, F., Pedreschi, D., and Yanagihara, T., PRUDEnce: a system for assessing privacy risk vs utility in data sharing ecosystems, Transactions on Data Privacy, vol. 11, 2018.
F. Giannotti, Trasarti, R., Bontcheva, K., and Grossi, V., SoBigData: Social Mining & Big Data Ecosystem, in Companion of the The Web Conference 2018 on The Web Conference 2018, 2018.
R. Guidotti, Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., and Pedreschi, D., A survey of methods for explaining black box models, ACM Computing Surveys (CSUR), vol. 51, p. 93, 2018.
2017
M. Atzmueller, Becker, M., Molino, A., Mueller, J., Peters, J., and Sirbu, A., Applications for Environmental Sensing in EveryAware, in Participatory Sensing, Opinions and Collective Awareness, Springer, 2017, pp. 135–155.
R. Pellungrini, Pratesi, F., and Pappalardo, L., Assessing Privacy Risk in Retail Data, in Personal Analytics and Privacy. An Individual and Collective Perspective - First International Workshop, PAP 2017, Held in Conjunction with ECML PKDD 2017, Skopje, Macedonia, September 18, 2017, Revised Selected Papers, 2017.
C. Panigutti, Tizzoni, M., Bajardi, P., Smoreda, Z., and Colizza, V., Assessing the use of mobile phone data to describe recurrent mobility patterns in spatial epidemic models, Royal Society open science, vol. 4, p. 160950, 2017.
B. Dong, Wang, H. Wendy, Monreale, A., Pedreschi, D., Giannotti, F., and Guo, W., Authenticated Outlier Mining for Outsourced Databases, IEEE Transactions on Dependable and Secure Computing, 2017.
R. Guidotti, Monreale, A., Nanni, M., Giannotti, F., and Pedreschi, D., Clustering Individual Transactional Data for Masses of Users, in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017.
R. Pellungrini, Pappalardo, L., Pratesi, F., and Monreale, A., A Data Mining Approach to Assess Privacy Risk in Human Mobility Data, ACM Trans. Intell. Syst. Technol., vol. 9, pp. 31:1–31:27, 2017.
L. Pappalardo and Simini, F., Data-driven generation of spatio-temporal routines in human mobility, Data Mining and Knowledge Discovery, 2017.
B. Furletti, Trasarti, R., Cintia, P., and Gabrielli, L., Discovering and Understanding City Events with Big Data: The Case of Rome, Information, vol. 8, p. 74, 2017.
A. Baroni, Conte, A., Patrignani, M., and Ruggieri, S., Efficiently Clustering Very Large Attributed Graphs, arXiv preprint arXiv:1703.08590, 2017.
P. Mukala, Cerone, A., and Turini, F., An empirical verification of a-priori learning models on mailing archives in the context of online learning activities of participants in free\libre open source software (FLOSS) communities, Education and Information Technologies, vol. 22, pp. 3207–3229, 2017.
S. Ruggieri, Enumerating Distinct Decision Trees, in International Conference on Machine Learning, 2017.
R. Guidotti and Coscia, M., On the Equivalence Between Community Discovery and Clustering, in International Conference on Smart Objects and Technologies for Social Good, 2017.
P. Gravino, Sirbu, A., Becker, M., Servedio, V. D. P., and Loreto, V., Experimental Assessment of the Emergence of Awareness and Its Influence on Behavioral Changes: The Everyaware Lesson, in Participatory Sensing, Opinions and Collective Awareness, Springer, 2017, pp. 337–362.
R. Pellungrini, Pappalardo, L., Pratesi, F., and Monreale, A., Fast Estimation of Privacy Risk in Human Mobility Data. 2017.
G. Rossetti, Milli, L., Giannotti, F., and Pedreschi, D., Forecasting success via early adoptions analysis: A data-driven study, PloS one, vol. 12, p. e0189096, 2017.

Pages