Publications

You are here

Export 5 results:
Author Title [ Type(Asc)] Year
Filters: Author is Anna Monreale  [Clear All Filters]
Journal Article
A. Monreale, Trasarti, R., Pedreschi, D., Renso, C., and Bogorny, V., C-safety: a framework for the anonymization of semantic trajectories, Transactions on Data Privacy, vol. 4, pp. 73-101, 2011.
S. Bergamaschi, Carlini, E., Ceci, M., Furletti, B., Giannotti, F., Malerba, D., Mezzanzanica, M., Monreale, A., Pasi, G., Pedreschi, D., Perego, R., and Ruggieri, S., Big Data Research in Italy: A Perspective, Engineering, vol. 2, p. 163, 2016.
B. Dong, Wang, H. Wendy, Monreale, A., Pedreschi, D., Giannotti, F., and Guo, W., Authenticated Outlier Mining for Outsourced Databases, IEEE Transactions on Dependable and Secure Computing, 2017.
B. Dong, Wang, H., Monreale, A., Pedreschi, D., Giannotti, F., and Guo, W., Authenticated Outlier Mining for Outsourced Databases, IEEE Transactions on Dependable and Secure Computing, vol. 17, pp. 222 - 235, 2020.
A. Monreale, Pedreschi, D., Pensa, R. G., and Pinelli, F., Anonymity preserving sequential pattern mining, Artif. Intell. Law, vol. 22, pp. 141–173, 2014.
R. Guidotti, Monreale, A., and Pedreschi, D., The AI black box Explanation Problem, ERCIM NEWS, pp. 12–13, 2019.
Conference Paper
M. Berlingerio, Coscia, M., Giannotti, F., Monreale, A., and Pedreschi, D., Towards Discovery of Eras in Social Networks, in M3SN 2010 Workshop, in conjunction with ICDE2010, 2010.
L. Milli, Monreale, A., Rossetti, G., Giannotti, F., Pedreschi, D., and Sebastiani, F., Quantification Trees, in 2013 IEEE 13th International Conference on Data Mining, Dallas, TX, USA, December 7-10, 2013, 2013, pp. 528–536.
L. Milli, Monreale, A., Rossetti, G., Pedreschi, D., Giannotti, F., and Sebastiani, F., Quantification in Social Networks, in International Conference on Data Science and Advanced Analytics (IEEE DSAA'2015), Paris, France, 2015.
A. Marrella, Monreale, A., Kloepper, B., and Krueger, M. W., Privacy-Preserving Outsourcing of Pattern Mining of Event-Log Data-A Use-Case from Process Industry, in Cloud Computing Technology and Science (CloudCom), 2016 IEEE International Conference on, 2016.
A. Monreale and Wang, H. Wendy, Privacy-Preserving Outsourcing of Data Mining, in 40th IEEE Annual Computer Software and Applications Conference, {COMPSAC} Workshops 2016, Atlanta, GA, USA, June 10-14, 2016, Atlanta, GA, USA, 2016.
F. Giannotti, Lakshmanan, L. V. S., Monreale, A., Pedreschi, D., and Wang, H. Wendy, Privacy-preserving data mining from outsourced databases., in the 3rd International Conference on Computers, Privacy, and Data Protection: An element of choice , 2011.
F. Pratesi, Monreale, A., Wang, H. Wendy, Rinzivillo, S., Pedreschi, D., Andrienko, G., and Andrienko, N., Privacy-Aware Distributed Mobility Data Analytics, in SEBD, Roccella Jonica, 2013.
A. Basu, Monreale, A., Corena, J. C., Giannotti, F., Pedreschi, D., Kiyomoto, S., Miyake, Y., Yanagihara, T., and Trasarti, R., A Privacy Risk Model for Trajectory Data, in Trust Management {VIII} - 8th {IFIP} {WG} 11.11 International Conference, {IFIPTM} 2014, Singapore, July 7-10, 2014. Proceedings, 2014, pp. 125–140.
R. Pellungrini, Monreale, A., and Guidotti, R., Privacy Risk for Individual Basket Patterns, in ECML PKDD 2018 Workshops, Cham, 2019.
R. Pellungrini, Monreale, A., and Guidotti, R., Privacy Risk for Individual Basket Patterns, in ECML PKDD 2018 Workshops, Cham, 2019.
F. Pratesi, Monreale, A., Giannotti, F., and Pedreschi, D., Privacy Preserving Multidimensional Profiling, in International Conference on Smart Objects and Technologies for Social Good, 2017.
A. Monreale, Trasarti, R., Renso, C., Pedreschi, D., and Bogorny, V., Preserving privacy in semantic-rich trajectories of human mobility, in SPRINGL, 2010, pp. 47-54.
F. Naretto, Pellungrini, R., Nardini, F. Maria, and Giannotti, F., Prediction and Explanation of Privacy Risk on Mobility Data with Neural Networks, in ECML PKDD 2020 Workshops, Cham, 2020.
F. Naretto, Pellungrini, R., Monreale, A., Nardini, F. Maria, and Musolesi, M., Predicting and Explaining Privacy Risk Exposure in Mobility Data, in Discovery Science, Cham, 2020.
R. G. Pensa, Monreale, A., Pinelli, F., and Pedreschi, D., Pattern-Preserving k-Anonymization of Sequences and its Application to Mobility Data Mining, in PiLBA, 2008.

Pages