You are here

Export 5 results:
[ Author(Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
R. Guidotti, Monreale, A., and Cariaggi, L., Investigating Neighborhood Generation Methods for Explanations of Obscure Image Classifiers, in Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2019.
R. Guidotti and Ruggieri, S., On The Stability of Interpretable Models, in 2019 International Joint Conference on Neural Networks (IJCNN), 2019.
R. Guidotti, Monreale, A., Nanni, M., Giannotti, F., and Pedreschi, D., Clustering Individual Transactional Data for Masses of Users, in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017.
R. Guidotti, Coscia, M., Pedreschi, D., and Pennacchioli, D., Behavioral Entropy and Profitability in Retail, in IEEE International Conference on Data Science and Advanced Analytics (IEEE DSAA'2015), Paris, 2015.
R. Guidotti, Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., and Pedreschi, D., A survey of methods for explaining black box models, ACM Computing Surveys (CSUR), vol. 51, p. 93, 2018.
R. Guidotti and Coscia, M., On the Equivalence Between Community Discovery and Clustering, in International Conference on Smart Objects and Technologies for Social Good, 2017.
R. Guidotti, Sassi, A., Berlingerio, M., Pascale, A., and Ghaddar, B., Social or green? A data-driven approach for more enjoyable carpooling, in Intelligent Transportation Systems (ITSC), 2015 IEEE 18th International Conference on, 2015.
R. Guidotti, Nanni, M., Rinzivillo, S., Pedreschi, D., and Giannotti, F., Never drive alone: Boosting carpooling with network analysis, Information Systems, vol. 64, pp. 237–257, 2017.
R. Guidotti and Cintia, P., Towards a Boosted Route Planner Using Individual Mobility Models, in Software Engineering and Formal Methods, Springer Berlin Heidelberg, 2015, pp. 108–123.
R. Guidotti, Rossetti, G., Pappalardo, L., Giannotti, F., and Pedreschi, D., Next Basket Prediction using Recurring Sequential Patterns, arXiv preprint arXiv:1702.07158, 2017.
R. Guidotti, Gabrielli, L., Monreale, A., Pedreschi, D., and Giannotti, F., Discovering temporal regularities in retail customers’ shopping behavior, EPJ Data Science, vol. 7, p. 6, 2018.
S. Hajian, Monreale, A., Pedreschi, D., Domingo-Ferrer, J., and Giannotti, F., Fair pattern discovery, in Symposium on Applied Computing, {SAC} 2014, Gyeongju, Republic of Korea - March 24 - 28, 2014, 2014, pp. 113–120.
S. Hajian, Monreale, A., Pedreschi, D., Domingo-Ferrer, J., and Giannotti, F., Injecting Discrimination and Privacy Awareness Into Pattern Discovery, in 12th {IEEE} International Conference on Data Mining Workshops, {ICDM} Workshops, Brussels, Belgium, December 10, 2012, 2012, pp. 360–369.
S. Hajian, Domingo-Ferrer, J., Monreale, A., Pedreschi, D., and Giannotti, F., Discrimination- and privacy-aware patterns, Data Min. Knowl. Discov., vol. 29, pp. 1733–1782, 2015.
H. Hosni, Masserotti, M. V., and Renso, C., Maximum Entropy Reasoning for GIS, 2006.
V. M. de Lira, Rinzivillo, S., Renso, C., Times, V. C., and Tedesco, P. {\'ı}ciaC. A. R., Investigating semantic regularity of human mobility lifestyle, in 18th International Database Engineering {&} Applications Symposium, {IDEAS} 2014, Porto, Portugal, July 7-9, 2014, Porto, Portugal, 2014, pp. 314–317.
V. M. de Lira, Rinzivillo, S., Times, V. C., and Renso, C., {MAPMOLTY:} {A} Web Tool for Discovering Place Loyalty Based on Mobile Crowdsource Data, in Web Engineering, 14th International Conference, {ICWE} 2014, Toulouse, France, July 1-4, 2014. Proceedings, 2014, pp. 528–531.
V. M. de Lira, Times, V. C., Renso, C., and Rinzivillo, S., ComeWithMe: An Activity-Oriented Carpooling Approach, in 2015 {IEEE} 18th International Conference on Intelligent Transportation Systems, 2015.
C. Lucchese, Bonchi, F., Giannotti, F., Orlando, S., Perego, R., and Trasarti, R., On Interactive Pattern Mining from Relational Databases, in SEBD, 2006, pp. 329-338.
A. Lulli, Gabrielli, L., Dazzi, P., Dell'Amico, M., Michiardi, P., Nanni, M., and Ricci, L., Scalable and flexible clustering solutions for mobile phone-based population indicators, I. J. Data Science and Analytics, vol. 4, pp. 285–299, 2017.
B. Thanh Luong, Ruggieri, S., and Turini, F., Classification Rule Mining Supported by Ontology for Discrimination Discovery, in Data Mining Workshops (ICDMW), 2016 IEEE 16th International Conference on, 2016.