Publications

You are here

Export 5 results:
[ Author(Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
G
F. Giannotti, Gozzi, C., and Manco, G., Clustering Transactional Data, in SEBD, 2001, pp. 163-176.
F. Giannotti, Manco, G., and Turini, F., Specifying Mining Algorithms with Iterative User-Defined Aggregates: A Case Study, in PKDD, 2001, pp. 128-139.
F. Giannotti, Lakshmanan, L. V. S., Monreale, A., Pedreschi, D., and Wang, H. Wendy, Privacy-preserving data mining from outsourced databases., in the 3rd International Conference on Computers, Privacy, and Data Protection: An element of choice , 2011.
F. Giannotti, Gozzi, C., and Manco, G., Clustering Transactional Data, in PKDD, 2002, pp. 175-187.
F. Giannotti, Naretto, F., and Bodria, F., Explainable for Trustworthy AI, in Human-Centered Artificial Intelligence - Advanced Lectures, 18th European Advanced Course on AI, ACAI 2021, Berlin, Germany, October 11-15, 2021, extended and improved lecture notes, 2021.
F. Giannotti, Invited talk: Logical Data Mining Query Languages, in KDID, 2002, p. 1.
F. Giannotti and Manco, G., LDL-M$_{\mbox{ine}}$: Integrating Data Mining with Intelligent Query Answering, in JELIA, 2002, pp. 517-520.
F. Giannotti, Nanni, M., Pedreschi, D., Renso, C., Rinzivillo, S., and Trasarti, R., GeoPKDD – Geographic Privacy-aware Knowledge Discovery, in The European Future Technologies Conference (FET 2009), 2009.
F. Giannotti, Nanni, M., Pinelli, F., and Pedreschi, D., Trajectory pattern mining, in KDD, 2007, pp. 330-339.
F. Giannotti, Pedreschi, D., and Theodoridis, Y., Geographic privacy-aware knowledge discovery and delivery, in EDBT, 2009, pp. 1157-1158.
F. Giannotti, Raffaetà, A., Renso, C., and Turini, F., Complex Reasoning on Geographical Data, in SEBD, 2001, pp. 331-338.
P. Gravino, Sirbu, A., Becker, M., Servedio, V. D. P., and Loreto, V., Experimental Assessment of the Emergence of Awareness and Its Influence on Behavioral Changes: The Everyaware Lesson, in Participatory Sensing, Opinions and Collective Awareness, Springer, 2017, pp. 337–362.
P. Gravino, Caminiti, S., Sirbu, A., Tria, F., Servedio, V. D. P., and Loreto, V., Unveiling Political Opinion Structures with a Web-experiment, in Proceedings of the 1st International Conference on Complex Information Systems, 2016.
V. Grossi, Pedreschi, D., and Turini, F., Data Mining and Constraints: An Overview, in Data Mining and Constraint Programming, Springer International Publishing, 2016, pp. 25–48.
V. Grossi, Romei, A., and Turini, F., Survey on using constraints in data mining, Data Mining and Knowledge Discovery, vol. 31, pp. 424–464, 2017.
V. Grossi, Guns, T., Monreale, A., Nanni, M., and Nijssen, S., Partition-Based Clustering Using Constraint Optimization, in Data Mining and Constraint Programming - Foundations of a Cross-Disciplinary Approach, Springer International Publishing, 2016, pp. 282–299.
V. Grossi, Monreale, A., Nanni, M., Pedreschi, D., and Turini, F., Clustering Formulation Using Constraint Optimization, in Software Engineering and Formal Methods - {SEFM} 2015 Collocated Workshops: ATSE, HOFM, MoKMaSD, and VERY*SCART, York, UK, September 7-8, 2015, Revised Selected Papers, 2015.
V. Grossi, Romei, A., and Ruggieri, S., A Case Study in Sequential Pattern Mining for IT-Operational Risk, in ECML/PKDD (1), 2008, pp. 424-439.
B. Guidi, Michienzi, A., and Rossetti, G., Towards the dynamic community discovery in decentralized online social networks, Journal of Grid Computing, vol. 17, pp. 23–44, 2019.
B. Guidi, Michienzi, A., and Rossetti, G., Dynamic community analysis in decentralized online social networks, in European Conference on Parallel Processing, 2017.
R. Guidotti, Monreale, A., Rinzivillo, S., Pedreschi, D., and Giannotti, F., Retrieving Points of Interest from Human Systematic Movements, in Software Engineering and Formal Methods, Springer International Publishing, 2014, pp. 294–308.
R. Guidotti, Mobility Ranking - Human Mobility Analysis Using Ranking Measures, 2013.
R. Guidotti, Monreale, A., Giannotti, F., Pedreschi, D., Ruggieri, S., and Turini, F., Factual and Counterfactual Explanations for Black Box Decision Making, IEEE Intelligent Systems, 2019.
R. Guidotti, Soldani, J., Neri, D., Brogi, A., and Pedreschi, D., Helping your docker images to spread based on explainable models, in Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2018.
R. Guidotti, Rossetti, G., Pappalardo, L., Giannotti, F., and Pedreschi, D., Market Basket Prediction using User-Centric Temporal Annotated Recurring Sequences, in 2017 IEEE International Conference on Data Mining (ICDM), 2017.

Pages