Publications

You are here

Export 5 results:
[ Author(Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
G
R. Guidotti and Rossetti, G., “Know Thyself” How Personal Music Tastes Shape the Last.Fm Online Social Network, in Formal Methods. FM 2019 International Workshops, Cham, 2020.
R. Guidotti, Monreale, A., Nanni, M., Giannotti, F., and Pedreschi, D., Clustering Individual Transactional Data for Masses of Users, in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017.
R. Guidotti, Coscia, M., Pedreschi, D., and Pennacchioli, D., Behavioral Entropy and Profitability in Retail, in IEEE International Conference on Data Science and Advanced Analytics (IEEE DSAA'2015), Paris, 2015.
R. Guidotti, Monreale, A., Matwin, S., and Pedreschi, D., Black Box Explanation by Learning Image Exemplars in the Latent Feature Space, in Machine Learning and Knowledge Discovery in Databases, Cham, 2020.
R. Guidotti, Nanni, M., Rinzivillo, S., Pedreschi, D., and Giannotti, F., Never drive alone: Boosting carpooling with network analysis, Information Systems, vol. 64, pp. 237–257, 2017.
R. Guidotti, Rossetti, G., Pappalardo, L., Giannotti, F., and Pedreschi, D., Next Basket Prediction using Recurring Sequential Patterns, arXiv preprint arXiv:1702.07158, 2017.
R. Guidotti and Coscia, M., On the Equivalence Between Community Discovery and Clustering, in International Conference on Smart Objects and Technologies for Social Good, 2017.
R. Guidotti, Mobility Ranking - Human Mobility Analysis Using Ranking Measures, 2013.
R. Guidotti, Soldani, J., Neri, D., Brogi, A., and Pedreschi, D., Helping your docker images to spread based on explainable models, in Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2018.
R. Guidotti, Soldani, J., Neri, D., and Brogi, A., Explaining successful docker images using pattern mining analysis, in Federation of International Conferences on Software Technologies: Applications and Foundations, 2018.
R. Guidotti, Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., and Pedreschi, D., A survey of methods for explaining black box models, ACM computing surveys (CSUR), vol. 51, p. 93, 2018.
R. Guidotti and Ruggieri, S., Assessing the Stability of Interpretable Models, arXiv preprint arXiv:1810.09352, 2018.
R. Guidotti, Monreale, A., and Cariaggi, L., Investigating Neighborhood Generation Methods for Explanations of Obscure Image Classifiers, in Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2019.
R. Guidotti, Monreale, A., and Pedreschi, D., The AI black box Explanation Problem, ERCIM NEWS, pp. 12–13, 2019.
R. Guidotti, Rossetti, G., Pappalardo, L., Giannotti, F., and Pedreschi, D., Personalized Market Basket Prediction with Temporal Annotated Recurring Sequences, IEEE Transactions on Knowledge and Data Engineering, 2018.
R. Guidotti and Ruggieri, S., On The Stability of Interpretable Models, in 2019 International Joint Conference on Neural Networks (IJCNN), 2019.
R. Guidotti, Monreale, A., Ruggieri, S., Pedreschi, D., Turini, F., and Giannotti, F., Local Rule-Based Explanations of Black Box Decision Systems, 2018.
B. Guidi, Michienzi, A., and Rossetti, G., Towards the dynamic community discovery in decentralized online social networks, Journal of Grid Computing, vol. 17, pp. 23–44, 2019.
B. Guidi, Michienzi, A., and Rossetti, G., Dynamic community analysis in decentralized online social networks, in European Conference on Parallel Processing, 2017.
V. Grossi, Romei, A., and Ruggieri, S., A Case Study in Sequential Pattern Mining for IT-Operational Risk, in ECML/PKDD (1), 2008, pp. 424-439.
V. Grossi, Romei, A., and Turini, F., Survey on using constraints in data mining, Data Mining and Knowledge Discovery, vol. 31, pp. 424–464, 2017.
V. Grossi, Guns, T., Monreale, A., Nanni, M., and Nijssen, S., Partition-Based Clustering Using Constraint Optimization, in Data Mining and Constraint Programming - Foundations of a Cross-Disciplinary Approach, Springer International Publishing, 2016, pp. 282–299.
V. Grossi, Monreale, A., Nanni, M., Pedreschi, D., and Turini, F., Clustering Formulation Using Constraint Optimization, in Software Engineering and Formal Methods - {SEFM} 2015 Collocated Workshops: ATSE, HOFM, MoKMaSD, and VERY*SCART, York, UK, September 7-8, 2015, Revised Selected Papers, 2015.
V. Grossi, Pedreschi, D., and Turini, F., Data Mining and Constraints: An Overview, in Data Mining and Constraint Programming, Springer International Publishing, 2016, pp. 25–48.
P. Gravino, Caminiti, S., Sirbu, A., Tria, F., Servedio, V. D. P., and Loreto, V., Unveiling Political Opinion Structures with a Web-experiment, in Proceedings of the 1st International Conference on Complex Information Systems, 2016.

Pages