Publications

You are here

Export 5 results:
Author [ Title(Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
E
M. Natilli, Monreale, A., Guidotti, R., and Pappalardo, L., Exploring Students Eating Habits Through Individual Profiling and Clustering Analysis, in ECML PKDD 2018 Workshops, 2018.
R. Trasarti, Rinzivillo, S., Pinelli, F., Nanni, M., Monreale, A., Renso, C., Pedreschi, D., and Giannotti, F., Exploring Real Mobility Data with M-Atlas, in ECML/PKDD (3), 2010, pp. 624-627.
P. Mukala, Cerone, A., and Turini, F., An exploration of learning processes as process maps in FLOSS repositories. 2015.
G. Aliyev and Nanni, M., Exploiting Vehicular Data for Exposure-Aware Pedestrian Routing, in 2025 26th IEEE International Conference on Mobile Data Management (MDM), 2025.
D. Pennacchioli, Coscia, M., Rinzivillo, S., Pedreschi, D., and Giannotti, F., Explaining the PRoduct Range Effect in Purchase Data, IEEE Big Data. 2013.
L. Pappalardo, Rossi, A., Natilli, M., and Cintia, P., Explaining the difference between men’s and women’s football, PLOS ONE, vol. 16, p. e0255407, 2021.
R. Guidotti, Soldani, J., Neri, D., and Brogi, A., Explaining successful docker images using pattern mining analysis, in Federation of International Conferences on Software Technologies: Applications and Foundations, 2018.
A. Fedele, Guidotti, R., and Pedreschi, D., Explaining Siamese Networks in Few-Shot Learning for Audio Data, in Discovery Science - 25th International Conference, DS 2022, Montpellier, France, October 10-12, 2022, Proceedings, 2022.
O. Lampridis, Guidotti, R., and Ruggieri, S., Explaining Sentiment Classification with Synthetic Exemplars and Counter-Exemplars, in Discovery Science, Cham, 2020.
C. Panigutti, Guidotti, R., Monreale, A., and Pedreschi, D., Explaining multi-label black-box classifiers for health applications, in International Workshop on Health Intelligence, 2019.
L. Corbucci, Guidotti, R., and Monreale, A., Explaining Black-Boxes in Federated Learning, in Explainable Artificial Intelligence, Cham, 2023.
F. Bodria, Rinzivillo, S., Fadda, D., Guidotti, R., Giannotti, F., and Pedreschi, D., Explaining Black Box with visual exploration of Latent Space, EuroVis–Short Papers, 2022.
F. Giannotti, Naretto, F., and Bodria, F., Explainable for Trustworthy AI, in Human-Centered Artificial Intelligence - Advanced Lectures, 18th European Advanced Course on AI, ACAI 2021, Berlin, Germany, October 11-15, 2021, extended and improved lecture notes, 2021.
F. Bodria, Panisson, A., Perotti, A., and Piaggesi, S., Explainability Methods for Natural Language Processing: Applications to Sentiment Analysis., in SEBD, 2020.
A. Fedele, Explain and Interpret Few-Shot Learning, in Joint Proceedings of the xAI-2023 Late-breaking Work, Demos and Doctoral Consortium co-located with the 1st World Conference on eXplainable Artificial Intelligence (xAI-2023), Lisbon, Portugal, July 26-28, 2023, 2023.
F. Naretto, Pellungrini, R., Fadda, D., and Rinzivillo, S., EXPHLOT: EXplainable Privacy assessment for Human LOcation Trajectories, in Discovery Science , 2023.
P. Gravino, Sirbu, A., Becker, M., Servedio, V. D. P., and Loreto, V., Experimental Assessment of the Emergence of Awareness and Its Influence on Behavioral Changes: The Everyaware Lesson, in Participatory Sensing, Opinions and Collective Awareness, Springer, 2017, pp. 337–362.
F. Giannotti, Manco, G., Pedreschi, D., and Turini, F., Experiences with a Logic-Based Knowledge Discovery Support Environment, in AI*IA, 1999, pp. 202-213.
F. Giannotti, Manco, G., Pedreschi, D., and Turini, F., Experiences with a Logic-based knowledge discovery Support Environment, in 1999 ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, 1999.
G. Rossetti, Exorcising the Demon: Angel, Efficient Node-Centric Community Discovery, in International Conference on Complex Networks and Their Applications, 2019.
F. Bonchi, Giannotti, F., Mazzanti, A., and Pedreschi, D., ExAnte: Anticipated Data Reduction in Constrained Pattern Mining, in PKDD, 2003, pp. 59-70.
F. Bonchi, Giannotti, F., Mazzanti, A., and Pedreschi, D., Exante: A Preprocessing Method for Frequent-Pattern Mining, IEEE Intelligent Systems, vol. 20, pp. 25-31, 2005.
F. Turini, Baglioni, M., Furletti, B., and Rinzivillo, S., Examples of Integration of Induction and Deduction in Knowledge Discovery, in Reasoning, Action and Interaction in AI Theories and Systems, 2006, pp. 307-326.
F. Turini, Baglioni, M., Furletti, B., and Rinzivillo, S., Examples of Integration of Induction and Deduction in Knowledge Discovery, in Reasoning, Action and Interaction in AI Theories and Systems, vol. 4155, 2006, pp. 307-326.
F. Bonchi, Giannotti, F., Mazzanti, A., and Pedreschi, D., ExAMiner: Optimized Level-wise Frequent Pattern Mining with Monotone Constraint, in ICDM, 2003, pp. 11-18.

Pages