Publications

You are here

Export 5 results:
[ Author(Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
A. Sirbu, Giannotti, F., Pedreschi, D., and Kertész, J., Public opinion and Algorithmic bias, ERCIM News, 2019.
A. Sirbu, Loreto, V., Servedio, V. D. P., and Tria, F., Cohesion, consensus and extreme information in opinion dynamics, Advances in Complex Systems, vol. 16, p. 1350035, 2013.
A. Sirbu, Ruskin, H. J., and Crane, M., Stages of Gene Regulatory Network Inference: the Evolutionary Algorithm Role, in Evolutionary Algorithms, InTech, 2011.
A. Sirbu, Ruskin, H. J., and Crane, M., Regulatory network modelling: Correlation for structure and parameter optimisation, Proceedings of The IASTED Technology Conferences (International Conference on Computational Bioscience), Cambridge, Massachusetts, pp. 3473–3481, 2010.
A. Sirbu, Loreto, V., Servedio, V. D. P., and Tria, F., Opinion dynamics with disagreement and modulated information, Journal of Statistical Physics, pp. 1–20, 2013.
A. Sirbu, Becker, M., Caminiti, S., De Baets, B., Elen, B., Francis, L., Gravino, P., Hotho, A., Ingarra, S., Loreto, V., Molino, A., Mueller, J., Peters, J., Ricchiuti, F., Saracino, F., Servedio, V. D. P., Stumme, G., Theunis, J., Tria, F., and Van den Bossche, J., Participatory Patterns in an International Air Quality Monitoring Initiative., PLoS One, vol. 10, p. e0136763, 2015.
A. Sirbu and Babaoglu, O., Towards operator-less data centers through data-driven, predictive, proactive autonomics, Cluster Computing, pp. 1–14, 2016.
A. Sirbu, Kerr, G., Crane, M., and Ruskin, H. J., RNA-Seq vs dual- and single-channel microarray data: sensitivity analysis for differential expression and clustering., PLoS One, vol. 7, p. e50986, 2012.
A. Sirbu, Loreto, V., Servedio, V. D. P., and Tria, F., Opinion dynamics: models, extensions and external effects, in Participatory Sensing, Opinions and Collective Awareness, Springer, 2017, pp. 363–401.
A. Sirbu, Ruskin, H. J., and Crane, M., Integrating heterogeneous gene expression data for gene regulatory network modelling., Theory Biosci, vol. 131, pp. 95-102, 2012.
A. Sirbu, Ruskin, H. J., and Crane, M., Cross-platform microarray data normalisation for regulatory network inference., PLoS One, vol. 5, p. e13822, 2010.
A. Sirbu, Ruskin, H. J., and Crane, M., Comparison of evolutionary algorithms in gene regulatory network model inference., BMC Bioinformatics, vol. 11, p. 59, 2010.
T
R. Trasarti, Baglioni, M., and Renso, C., DAMSEL: A System for Progressive Querying and Reasoning on Movement Data, in DEXA Workshops, 2009, pp. 452-456.
R. Trasarti, Pinelli, F., Nanni, M., and Giannotti, F., Individual Mobility Profiles: Methods and Application on Vehicle Sharing, in Twentieth Italian Symposium on Advanced Database Systems, {SEBD} 2012, Venice, Italy, June 24-27, 2012, Proceedings, 2012.
R. Trasarti, Bonchi, F., and Goethals, B., A new technique for sequential pattern mining under regular expressions, in SEBD, 2009, pp. 325-332.
R. Trasarti, Olteanu-Raimond, A. - M., Nanni, M., Couronné, T., Furletti, B., Giannotti, F., Smoreda, Z., and Ziemlicki, C., Discovering urban and country dynamics from mobile phone data with spatial correlation patterns, Telecommunications Policy, p. -, 2014.
R. Trasarti, Guidotti, R., Monreale, A., and Giannotti, F., MyWay: Location prediction via mobility profiling, Information Systems, vol. 64, pp. 350–367, 2017.
R. Trasarti, Pinelli, F., Nanni, M., and Giannotti, F., Mining mobility user profiles for car pooling, in KDD, 2011, pp. 1190-1198.
R. Trasarti, Giannotti, F., Nanni, M., Pedreschi, D., and Renso, C., A Query Language for Mobility Data Mining, IJDWM, vol. 7, pp. 24-45, 2011.
R. Trasarti, Rinzivillo, S., Pinelli, F., Nanni, M., Monreale, A., Renso, C., Pedreschi, D., and Giannotti, F., Exploring Real Mobility Data with M-Atlas, in ECML/PKDD (3), 2010, pp. 624-627.
F. Turini, Baglioni, M., Furletti, B., and Rinzivillo, S., Examples of Integration of Induction and Deduction in Knowledge Discovery, in Reasoning, Action and Interaction in AI Theories and Systems, vol. 4155, 2006, pp. 307-326.
F. Turini, Furletti, B., Baglioni, M., Spinsanti, L., and Bellandi, A., Ontology-Based Business Plan Classification, in Enterprise Distributed Object Computing Conference (EDOC), 2008.
F. Turini, Baglioni, M., Furletti, B., and Rinzivillo, S., Examples of Integration of Induction and Deduction in Knowledge Discovery, in Reasoning, Action and Interaction in AI Theories and Systems, 2006, pp. 307-326.
F. Turini and Furletti, B., What else can be extracted from ontologies? Influence Rules, in Software and Data Technologies, Springer, 2012.

Pages