You are here

Export 5 results:
[ Author(Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
G. Rossetti, Pappalardo, L., and Pedreschi, D., Measuring tie strength in multidimensional networks, in SEDB 2013, 2013.
G. Rossetti, Guidotti, R., Miliou, I., Pedreschi, D., and Giannotti, F., A supervised approach for intra-/inter-community interaction prediction in dynamic social networks, Social Network Analysis and Mining, vol. 6, p. 86, 2016.
G. Rossetti, Milli, L., Rinzivillo, S., Sirbu, A., Pedreschi, D., and Giannotti, F., NDlib: a python library to model and analyze diffusion processes over complex networks, International Journal of Data Science and Analytics, vol. 5, pp. 61–79, 2018.
G. Rossetti, Berlingerio, M., and Giannotti, F., Scalable Link Prediction on Multidimensional Networks, in ICDM Workshops, Vancouver, 2011, pp. 979-986.
G. Rossetti, Pappalardo, L., Pedreschi, D., and Giannotti, F., Tiles: an online algorithm for community discovery in dynamic social networks, Machine Learning, vol. 106, pp. 1213–1241, 2017.
G. Rossetti, Guidotti, R., Pennacchioli, D., Pedreschi, D., and Giannotti, F., Interaction Prediction in Dynamic Networks exploiting Community Discovery, in International conference on Advances in Social Network Analysis and Mining, ASONAM 2015, Paris, France, 2015.
A. Rossi, Perri, E., Pappalardo, L., Cintia, P., and F Iaia, M., Relationship between External and Internal Workloads in Elite Soccer Players: Comparison between Rate of Perceived Exertion and Training Load, Applied Sciences, vol. 9, p. 5174, 2019.
A. Rossi, Pappalardo, L., Cintia, P., F Iaia, M., Fernàndez, J., and Medina, D., Effective injury forecasting in soccer with GPS training data and machine learning, PloS one, vol. 13, p. e0201264, 2018.
S. Ruggieri, Data Anonymity Meets Non-discrimination, in Data Mining Workshops (ICDMW), 2013 IEEE 13th International Conference on, 2013.
S. Ruggieri and Turini, F., A KDD process for discrimination discovery, in Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2016.
S. Ruggieri, Learning from polyhedral sets, in Proceedings of the Twenty-Third international joint conference on Artificial Intelligence, 2013.
S. Ruggieri, Enumerating Distinct Decision Trees, in International Conference on Machine Learning, 2017.
S. Ruggieri and Mesnard, F., Typing Linear Constraints for Moding CLP() Programs, in SAS, 2008, pp. 128-143.
S. Ruggieri, Introduction to the special issue on Artificial Intelligence for Society and Economy, Intelligenza Artificiale, vol. 9, pp. 23–23, 2015.
S. Ruggieri, Hajian, S., Kamiran, F., and Zhang, X., Anti-discrimination analysis using privacy attack strategies, in Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2014.
S. Ruggieri, Using t-closeness anonymity to control for non-discrimination., Trans. Data Privacy, vol. 7, pp. 99–129, 2014.
S. Ruggieri, Eirinakis, P., Subramani, K., and Wojciechowski, P., On the complexity of quantified linear systems, Theoretical Computer Science, vol. 518, pp. 128–134, 2014.
V. D. P. Servedio, Caminiti, S., Gravino, P., Loreto, V., Sirbu, A., and Tria, F., Large Scale Engagement Through Web-Gaming and Social Computations, in Participatory Sensing, Opinions and Collective Awareness, Springer, 2017, pp. 237–254.
M. Setzu and Atzori, M., SPARQL Queries over Source Code, in 2016 IEEE Tenth International Conference on Semantic Computing (ICSC), 2016.
A. Sirbu, Loreto, V., Servedio, V. D. P., and Tria, F., Opinion dynamics with disagreement and modulated information, Journal of Statistical Physics, pp. 1–20, 2013.
A. Sirbu, Becker, M., Caminiti, S., De Baets, B., Elen, B., Francis, L., Gravino, P., Hotho, A., Ingarra, S., Loreto, V., Molino, A., Mueller, J., Peters, J., Ricchiuti, F., Saracino, F., Servedio, V. D. P., Stumme, G., Theunis, J., Tria, F., and Van den Bossche, J., Participatory Patterns in an International Air Quality Monitoring Initiative., PLoS One, vol. 10, p. e0136763, 2015.
A. Sirbu and Babaoglu, O., Towards operator-less data centers through data-driven, predictive, proactive autonomics, Cluster Computing, pp. 1–14, 2016.
A. Sirbu, Kerr, G., Crane, M., and Ruskin, H. J., RNA-Seq vs dual- and single-channel microarray data: sensitivity analysis for differential expression and clustering., PLoS One, vol. 7, p. e50986, 2012.
A. Sirbu, Loreto, V., Servedio, V. D. P., and Tria, F., Opinion dynamics: models, extensions and external effects, in Participatory Sensing, Opinions and Collective Awareness, Springer, 2017, pp. 363–401.
A. Sirbu, Ruskin, H. J., and Crane, M., Integrating heterogeneous gene expression data for gene regulatory network modelling., Theory Biosci, vol. 131, pp. 95-102, 2012.