Publications

You are here

Export 5 results:
Author Title Type [ Year(Desc)]
Filters: Author is Anna Monreale  [Clear All Filters]
2017
F. Pratesi, Monreale, A., Giannotti, F., and Pedreschi, D., Privacy Preserving Multidimensional Profiling, in International Conference on Smart Objects and Technologies for Social Good, 2017.
2018
R. Pellungrini, Pappalardo, L., Pratesi, F., and Monreale, A., Analyzing Privacy Risk in Human Mobility Data, in Software Technologies: Applications and Foundations - STAF 2018 Collocated Workshops, Toulouse, France, June 25-29, 2018, Revised Selected Papers, 2018.
R. Guidotti, Gabrielli, L., Monreale, A., Pedreschi, D., and Giannotti, F., Discovering temporal regularities in retail customers’ shopping behavior, EPJ Data Science, vol. 7, p. 6, 2018.
M. Natilli, Monreale, A., Guidotti, R., and Pappalardo, L., Exploring Students Eating Habits Through Individual Profiling and Clustering Analysis, in ECML PKDD 2018 Workshops, 2018.
I. Martinucci, Natilli, M., Lorenzoni, V., Pappalardo, L., Monreale, A., Turchetti, G., Pedreschi, D., Marchi, S., Barale, R., and de Bortoli, N., Gastroesophageal reflux symptoms among Italian university students: epidemiology and dietary correlates using automatically recorded transactions, BMC gastroenterology, vol. 18, p. 116, 2018.
G. Amato, Candela, L., Castelli, D., Esuli, A., Falchi, F., Gennaro, C., Giannotti, F., Monreale, A., Nanni, M., Pagano, P., Pappalardo, L., Pedreschi, D., Pratesi, F., Rabitti, F., Rinzivillo, S., Rossetti, G., Ruggieri, S., Sebastiani, F., and Tesconi, M., How Data Mining and Machine Learning Evolved from Relational Data Base to Data Science, in A Comprehensive Guide Through the Italian Database Research Over the Last 25 Years, S. Flesca, Greco, S., Masciari, E., and Saccà, D., Eds. Cham: Springer International Publishing, 2018, pp. 287 - 306.
R. Guidotti, Monreale, A., and Rinzivillo, S., Learning Data Mining, in 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA)2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), 2018.
R. Guidotti, Monreale, A., Ruggieri, S., Pedreschi, D., Turini, F., and Giannotti, F., Local Rule-Based Explanations of Black Box Decision Systems, 2018.
D. Pedreschi, Giannotti, F., Guidotti, R., Monreale, A., Pappalardo, L., Ruggieri, S., and Turini, F., Open the Black Box Data-Driven Explanation of Black Box Decision Systems, 2018.
F. Pratesi, Monreale, A., Trasarti, R., Giannotti, F., Pedreschi, D., and Yanagihara, T., PRUDEnce: a system for assessing privacy risk vs utility in data sharing ecosystems, Transactions on Data Privacy, vol. 11, 2018.
R. Guidotti, Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., and Pedreschi, D., A survey of methods for explaining black box models, ACM computing surveys (CSUR), vol. 51, p. 93, 2018.
2019
R. Guidotti, Monreale, A., and Pedreschi, D., The AI black box Explanation Problem, ERCIM NEWS, pp. 12–13, 2019.
C. Panigutti, Guidotti, R., Monreale, A., and Pedreschi, D., Explaining multi-label black-box classifiers for health applications, in International Workshop on Health Intelligence, 2019.
R. Guidotti, Monreale, A., Giannotti, F., Pedreschi, D., Ruggieri, S., and Turini, F., Factual and Counterfactual Explanations for Black Box Decision Making, IEEE Intelligent Systems, 2019.
R. Guidotti, Monreale, A., and Cariaggi, L., Investigating Neighborhood Generation Methods for Explanations of Obscure Image Classifiers, in Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2019.
D. Pedreschi, Giannotti, F., Guidotti, R., Monreale, A., Ruggieri, S., and Turini, F., Meaningful explanations of Black Box AI decision systems, in Proceedings of the AAAI Conference on Artificial Intelligence, 2019.
R. Pellungrini, Monreale, A., and Guidotti, R., Privacy Risk for Individual Basket Patterns, in ECML PKDD 2018 Workshops, Cham, 2019.
R. Pellungrini, Monreale, A., and Guidotti, R., Privacy Risk for Individual Basket Patterns, in ECML PKDD 2018 Workshops, Cham, 2019.
2020
B. Dong, Wang, H., Monreale, A., Pedreschi, D., Giannotti, F., and Guo, W., Authenticated Outlier Mining for Outsourced Databases, IEEE Transactions on Dependable and Secure Computing, vol. 17, pp. 222 - 235, 2020.
R. Guidotti, Monreale, A., Matwin, S., and Pedreschi, D., Black Box Explanation by Learning Image Exemplars in the Latent Feature Space, in Machine Learning and Knowledge Discovery in Databases, Cham, 2020.
N. Forgó, Hänold, S., van den Hoven, J., Krügel, T., Lishchuk, I., Mahieu, R., Monreale, A., Pedreschi, D., Pratesi, F., and van Putten, D., An ethico-legal framework for social data science, 2020.
M. Setzu, Guidotti, R., Monreale, A., and Turini, F., Global Explanations with Local Scoring, in Machine Learning and Knowledge Discovery in Databases, Cham, 2020.
R. Pellungrini, Pappalardo, L., Simini, F., and Monreale, A., Modeling Adversarial Behavior Against Mobility Data Privacy, IEEE Transactions on Intelligent Transportation SystemsIEEE Transactions on Intelligent Transportation Systems, pp. 1 - 14, 2020.
F. Naretto, Pellungrini, R., Monreale, A., Nardini, F. Maria, and Musolesi, M., Predicting and Explaining Privacy Risk Exposure in Mobility Data, in Discovery Science, Cham, 2020.
F. Naretto, Pellungrini, R., Nardini, F. Maria, and Giannotti, F., Prediction and Explanation of Privacy Risk on Mobility Data with Neural Networks, in ECML PKDD 2020 Workshops, Cham, 2020.

Pages