Publications

You are here

Export 5 results:
[ Author(Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
B
M. Berlingerio, Coscia, M., Giannotti, F., Monreale, A., and Pedreschi, D., Towards Discovery of Eras in Social Networks, in M3SN 2010 Workshop, in conjunction with ICDE2010, 2010.
M. Berlingerio, Bonchi, F., Giannotti, F., and Turini, F., Time-Annotated Sequences for Medical Data Mining, in ICDM Workshops, 2007, pp. 133-138.
M. Berlingerio, Bonchi, F., Giannotti, F., and Turini, F., Mining Clinical Data with a Temporal Dimension: A Case Study, in BIBM, 2007, pp. 429-436.
M. Berlingerio, Coscia, M., Giannotti, F., Monreale, A., and Pedreschi, D., Foundations of Multidimensional Network Analysis, in ASONAM, 2011, pp. 485-489.
M. Berlingerio, Coscia, M., and Giannotti, F., Finding and Characterizing Communities in Multidimensional Networks, in ASONAM, 2011, pp. 490-494.
M. Berlingerio, Giannotti, F., Nanni, M., and Pinelli, F., Temporal analysis of process logs: a case study, in SEBD, 2008, pp. 430-437.
M. Berlingerio, Coscia, M., and Giannotti, F., Finding redundant and complementary communities in multidimensional networks, in CIKM, 2011, pp. 2181-2184.
M. Berlingerio, Coscia, M., Giannotti, F., Monreale, A., and Pedreschi, D., The pursuit of hubbiness: Analysis of hubs in large multidimensional networks, J. Comput. Science, vol. 2, pp. 223-237, 2011.
M. Berlingerio, Coscia, M., Giannotti, F., Monreale, A., and Pedreschi, D., As Time Goes by: Discovering Eras in Evolving Social Networks, in PAKDD (1), 2010, pp. 81-90.
M. Berlingerio, Coscia, M., and Giannotti, F., Mining the Temporal Dimension of the Information Propagation, in IDA, 2009, pp. 237-248.
M. Berlingerio, Coscia, M., Giannotti, F., Monreale, A., and Pedreschi, D., Discovering Eras in Evolving Social Networks (Extended Abstract), in SEBD, 2010, pp. 78-85.
M. Berlingerio, Pinelli, F., Nanni, M., and Giannotti, F., Temporal mining for interactive workflow data analysis, in KDD, 2009, pp. 109-118.
M. Berlingerio, Coscia, M., and Giannotti, F., Mining the Temporal Dimension of the Information Propagation, in IDA, 2009, pp. 237-248.
M. Berlingerio, Coscia, M., and Giannotti, F., Mining the Information Propagation in a Network, in SEBD, 2009, pp. 333-340.
M. Berlingerio, Bicer, V., Botea, A., Braghin, S., Lopes, N., Guidotti, R., and Pratesi, F., Mobility Mining for Journey Planning in Rome, in Machine Learning and Knowledge Discovery in Databases, 2015.
C. Bertazzoni and Giannotti, F., RASP: A Resource Allocator for Software Projects, in IEA/AIE (Vol. 2), 1990, pp. 628-637.
B. Bertolino, Meo, L., Pedreschi, D., and Turini, F., The Type System of LML. 1992, pp. 313-332.
B. Bertolino, Mancarella, P., Meo, L., Nini, L., Pedreschi, D., and Turini, F., A Progress Report on the LML Project, in FGCS, 1988, pp. 675-684.
C. Bessiere, De Raedt, L., Kotthoff, L., Nijssen, S., O'Sullivan, B., and Pedreschi, D., Data Mining and Constraint Programming - Foundations of a Cross-Disciplinary Approach.. 2016.
C. Bessiere, De Raedt, L., Guns, T., Kotthoff, L., Nanni, M., Nijssen, S., O'Sullivan, B., Paparrizou, A., Pedreschi, D., and Simonis, H., The Inductive Constraint Programming Loop, IEEE Intelligent Systems, 2017.
G. Betti, Mulas, A., Natilli, M., Neri, L., and Verma, V., Comparative indicators of regional poverty and deprivation: Poland versus EU-15 Member States, in conference Comparative Economic Analysis of Households‟ Behaviour (CEAHB): Old and New EU Members, Warsaw University, 2005.
K. S. Boeg, Ira Assent,, and Magnani, M., Efficient GPU-based skyline computation, in DAMON@SIGMOD 2013, 2013.
V. Bogorny, Renso, C., de Aquino, A. R., de Siqueira, F. L., and Alvares, L. O., CONSTAnT - A Conceptual Data Model for Semantic Trajectories of Moving Objects , Transaction in GIS, 2013.
F. Bonchi, Giannotti, F., Mazzanti, A., and Pedreschi, D., Efficient breadth-first mining of frequent pattern with monotone constraints, Knowl. Inf. Syst., vol. 8, pp. 131-153, 2005.
F. Bonchi, Giannotti, F., Mazzanti, A., and Pedreschi, D., Exante: A Preprocessing Method for Frequent-Pattern Mining, IEEE Intelligent Systems, vol. 20, pp. 25-31, 2005.

Pages