Publications

You are here

Export 5 results:
[ Author(Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
B
M. Berlingerio, Bonchi, F., and Giannotti, F., Towards Constraint-Based Subgraph Mining, in SEBD, 2007, pp. 274-281.
M. Berlingerio, Bonchi, F., Bringmann, B., and Gionis, A., Mining Graph Evolution Rules, in ECML/PKDD 2009, Bled, Slovenia, 2009, pp. 115-130.
M. Berlingerio, Coscia, M., and Giannotti, F., Mining the Information Propagation in a Network, in SEBD, 2009, pp. 333-340.
M. Berlingerio, Bonchi, F., Curcio, M., Giannotti, F., and Turini, F., Mining Clinical, Immunological, and Genetic Data of Solid Organ Transplantation, in Biomedical Data and Applications, 2009, pp. 211-236.
M. Berlingerio, Bonchi, F., Giannotti, F., and Turini, F., Time-Annotated Sequences for Medical Data Mining, in ICDM Workshops, 2007, pp. 133-138.
M. Berlingerio, Coscia, M., Giannotti, F., Monreale, A., and Pedreschi, D., Evolving networks: Eras and turning points, Intell. Data Anal., vol. 17, pp. 27–48, 2013.
M. Berlingerio, Coscia, M., Giannotti, F., Monreale, A., and Pedreschi, D., Towards Discovery of Eras in Social Networks, in M3SN 2010 Workshop, in conjunction with ICDE2010, 2010.
M. Berlingerio, Bonchi, F., Giannotti, F., and Turini, F., Mining Clinical Data with a Temporal Dimension: A Case Study, in BIBM, 2007, pp. 429-436.
M. Berlingerio, Giannotti, F., Nanni, M., and Pinelli, F., Temporal analysis of process logs: a case study, in SEBD, 2008, pp. 430-437.
M. Berlingerio, Coscia, M., Giannotti, F., Monreale, A., and Pedreschi, D., Foundations of Multidimensional Network Analysis, in ASONAM, 2011, pp. 485-489.
M. Berlingerio, Coscia, M., and Giannotti, F., Finding and Characterizing Communities in Multidimensional Networks, in ASONAM, 2011, pp. 490-494.
M. Berlingerio, Coscia, M., and Giannotti, F., Mining the Temporal Dimension of the Information Propagation, in IDA, 2009, pp. 237-248.
M. Berlingerio, Coscia, M., and Giannotti, F., Finding redundant and complementary communities in multidimensional networks, in CIKM, 2011, pp. 2181-2184.
M. Berlingerio, Pinelli, F., Nanni, M., and Giannotti, F., Temporal mining for interactive workflow data analysis, in KDD, 2009, pp. 109-118.
M. Berlingerio, Coscia, M., Giannotti, F., Monreale, A., and Pedreschi, D., The pursuit of hubbiness: Analysis of hubs in large multidimensional networks, J. Comput. Science, vol. 2, pp. 223-237, 2011.
C. Bertazzoni and Giannotti, F., RASP: A Resource Allocator for Software Projects, in IEA/AIE (Vol. 2), 1990, pp. 628-637.
B. Bertolino, Meo, L., Pedreschi, D., and Turini, F., The Type System of LML. 1992, pp. 313-332.
B. Bertolino, Mancarella, P., Meo, L., Nini, L., Pedreschi, D., and Turini, F., A Progress Report on the LML Project, in FGCS, 1988, pp. 675-684.
C. Bessiere, De Raedt, L., Guns, T., Kotthoff, L., Nanni, M., Nijssen, S., O'Sullivan, B., Paparrizou, A., Pedreschi, D., and Simonis, H., The Inductive Constraint Programming Loop, IEEE Intelligent Systems, 2017.
C. Bessiere, De Raedt, L., Kotthoff, L., Nijssen, S., O'Sullivan, B., and Pedreschi, D., Data Mining and Constraint Programming - Foundations of a Cross-Disciplinary Approach.. 2016.
G. Betti, Mulas, A., Natilli, M., Neri, L., and Verma, V., Comparative indicators of regional poverty and deprivation: Poland versus EU-15 Member States, in conference Comparative Economic Analysis of Households‟ Behaviour (CEAHB): Old and New EU Members, Warsaw University, 2005.
K. S. Boeg, Ira Assent,, and Magnani, M., Efficient GPU-based skyline computation, in DAMON@SIGMOD 2013, 2013.
V. Bogorny, Renso, C., de Aquino, A. R., de Siqueira, F. L., and Alvares, L. O., CONSTAnT - A Conceptual Data Model for Semantic Trajectories of Moving Objects , Transaction in GIS, 2013.
F. Bonchi, Giannotti, F., Mainetto, G., and Pedreschi, D., A Classification-Based Methodology for Planning Audit Strategies in Fraud Detection, in KDD, 1999, pp. 175-184.
F. Bonchi, Giannotti, F., and Pedreschi, D., A Relational Query Primitive for Constraint-Based Pattern Mining, in Constraint-Based Mining and Inductive Databases, 2004, pp. 14-37.

Pages