Publications

You are here

Export 5 results:
Author [ Title(Asc)] Type Year
Filters: Author is Fosca Giannotti  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
P
F. Pratesi, Monreale, A., Trasarti, R., Giannotti, F., Pedreschi, D., and Yanagihara, T., PRUDEnce: a system for assessing privacy risk vs utility in data sharing ecosystems, Transactions on Data Privacy, vol. 11, 2018.
F. Giannotti, Greco, S., Saccà, D., and Zaniolo, C., Programming with Non-Determinism in Deductive Databases, Ann. Math. Artif. Intell., vol. 19, pp. 97-125, 1997.
M. Coscia, Pennacchioli, D., and Giannotti, F., Product assortment and customer mobility, EPJ Data Science, vol. 4, pp. 1–18, 2015.
F. Giannotti, Lakshmanan, L. V. S., Monreale, A., Pedreschi, D., and Wang, H. Wendy, Privacy-Preserving Mining of Association Rules From Outsourced Transaction Databases, IEEE Systems Journal, 2013.
F. Giannotti, Lakshmanan, L. V. S., Monreale, A., Pedreschi, D., and Wang, H. Wendy, Privacy-preserving data mining from outsourced databases., in the 3rd International Conference on Computers, Privacy, and Data Protection: An element of choice , 2011.
A. Monreale, Rinzivillo, S., Pratesi, F., Giannotti, F., and Pedreschi, D., Privacy-by-Design in Big Data Analytics and Social Mining, EPJ Data Science, vol. 10, 2014.
M. Atzori, Bonchi, F., Giannotti, F., Pedreschi, D., and Abul, O., Privacy-Aware Knowledge Discovery from Location Data, in MDM, 2007, pp. 283-287.
A. Basu, Monreale, A., Corena, J. C., Giannotti, F., Pedreschi, D., Kiyomoto, S., Miyake, Y., Yanagihara, T., and Trasarti, R., A Privacy Risk Model for Trajectory Data, in Trust Management {VIII} - 8th {IFIP} {WG} 11.11 International Conference, {IFIPTM} 2014, Singapore, July 7-10, 2014. Proceedings, 2014, pp. 125–140.
F. Pratesi, Monreale, A., Giannotti, F., and Pedreschi, D., Privacy Preserving Multidimensional Profiling, in International Conference on Smart Objects and Technologies for Social Good, 2017.
F. Bonchi, Giannotti, F., Mazzanti, A., and Pedreschi, D., Pre-processing for Constrained Pattern Mining, in SEBD, 2003, pp. 519-530.
R. Guidotti, Rossetti, G., Pappalardo, L., Giannotti, F., and Pedreschi, D., Personalized Market Basket Prediction with Temporal Annotated Recurring Sequences, IEEE Transactions on Knowledge and Data Engineering, 2018.
D. Pennacchioli, Rossetti, G., Pappalardo, L., Pedreschi, D., Giannotti, F., and Coscia, M., The patterns of musical influence on the Last.Fm social network, in 22nd Italian Symposium on Advanced Database Systems, {SEBD} 2014, Sorrento Coast, Italy, June 16-18, 2014., 2014.
N
F. Giannotti, Manco, G., Nanni, M., and Pedreschi, D., Nondeterministic, Nonmonotonic Logic Databases, IEEE Trans. Knowl. Data Eng., vol. 13, pp. 813-823, 2001.
F. Giannotti, Pedreschi, D., Saccà, D., and Zaniolo, C., Non-Determinism in Deductive Databases, in DOOD, 1991, pp. 129-146.
G. Rossetti, Pedreschi, D., and Giannotti, F., Node-centric Community Discovery: From static to dynamic social network analysis, Online Social Networks and Media, vol. 3, pp. 32–48, 2017.
R. Guidotti, Rossetti, G., Pappalardo, L., Giannotti, F., and Pedreschi, D., Next Basket Prediction using Recurring Sequential Patterns, arXiv preprint arXiv:1702.07158, 2017.
R. Guidotti, Nanni, M., Rinzivillo, S., Pedreschi, D., and Giannotti, F., Never drive alone: Boosting carpooling with network analysis, Information Systems, vol. 64, pp. 237–257, 2017.
G. Rossetti, Milli, L., Rinzivillo, S., Sirbu, A., Pedreschi, D., and Giannotti, F., NDlib: Studying Network Diffusion Dynamics, in IEEE International Conference on Data Science and Advanced Analytics, DSA, Tokyo, 2017.
G. Rossetti, Milli, L., Rinzivillo, S., Sirbu, A., Pedreschi, D., and Giannotti, F., NDlib: a python library to model and analyze diffusion processes over complex networks, International Journal of Data Science and Analytics, pp. 1–19, 2017.
G. Rossetti, Milli, L., Rinzivillo, S., Sirbu, A., Pedreschi, D., and Giannotti, F., NDlib: a python library to model and analyze diffusion processes over complex networks, International Journal of Data Science and Analytics, vol. 5, pp. 61–79, 2018.

Pages