A Declarative Framework for Reasoning on
Spatio-Temporal Data

Mirco Nanni!, Alessandra Raffaetd2, Chiara Renso!, Franco Turini®
bl bl bl

! ISTI CNR - Pisa
{nanni, renso}@isti.cor.it

% Dipartimento di Informatica - Universitd Ca’ Foscari Venezia,
raffaeta@dsi.unive.it

2 Dipartimento di Informatica - Universita di Pisa
turini@di.unipi.it

Summary. We present a framework for a declarative approach to spatio-temporal
reasoning on geographical data. We introduce a constraint logical language STACLP,
providing a set of spatial and temporal primitive operators that allow the user to
perform temporal reasoning on spatial data. Formulae can be annotated with labels
(annotations) to represent both temporal and spatial information, and relations be-
tween these labels can be expressed by using constraints. The role of such formalism
can be manifold: first, it can be used as an advanced spatio-temporal query language
on geographical data. Second, it can be exploited as a deductive rule-based approach
to represent domain knowledge on such data. Third, it is well suited to represent
trajectories of moving objects. Such trajectories can be analysed by using inductive
techniques, like clustering, in order to find common movement patterns. It is worth
to point out that STACLP allows one to tackle several analysis tasks requiring the
integration of deductive and inductive capabilities. This is exemplified by means of
a case study in the field of behavioural ecology.

1 Introduction

New technologies in the field of mobile computing and communication can
provide a wealth of spatio-temporal information. Collected data are useful as
far as they can be used to analyse phenomena and to take informed decisions.
The first step for allowing one to make a profitable use of data is to provide a
query language for them, and we believe that the query language, even more
in the case of spatio-temporal data, must be able to handle not only data but
also rules, and exhibit both deductive and inductive capabilities. Rules can be
used to represent general knowledge about the collected data, and deductive
capabilities can provide answers to queries that require some inference besides
the crude manipulation of the data. Induction can help extracting implicit

2 Mirco Nanni, Alessandra Raffaetd, Chiara Renso, Franco Turini

knowledge from data and, according to the impressive success in the knowledge
discovery in database field, is a powerful support to decision making,.

In order to support both deductive and inductive reasoning on spatio-
temporal data we propose the formalism STACLP (Spatio-Temporal Anno-
tated Constraint Logic Programming) [20], based on constraint logic program-
ming extended with annotations. The basic constraint logic programming pro-
vides the deductive capabilities, and annotations allow a neat representation of
temporal, spatial and spatio-temporal knowledge. On this ground we can con-
struct the inductive capabilities of the language by implementing knowledge
extraction methods. The computation of clusters of trajectories is the case we
discuss in detail in the chapter. However we believe that it is paradigmatic
for the general approach to the definition of knowledge discovery methods in
STACLP.

Our proposal fits in a new and promising research field, that is the inte-
gration of declarative paradigms and systems for dealing with spatial and/or
temporal information, such as spatial databases and Geographical Informa-
tion Systems (GISs). In the literature we can find other attempts to exploit
the deductive capabilities of logics to reason on geographic data [25, 23]. For
instance [1] expresses spatial data in an object-oriented paradigm and builds
a deductive part to infer knowledge from the spatial objects. The system
DEDALE [12, 13], instead, relies on a logical model based on linear con-
straints, which generalises the constraint database model of [16]. In DEDALE
both time and space are modelled in a uniform way by using constraints (for
more details see Sect. 4). Finally, we recall MuTACLP [21, 18], a constraint
logic based knowledge representation language that offers facilities for han-
dling spatio-temporal information and some basic operators for combining dif-
ferent spatio-temporal knowledge bases. In MuTACLP temporal information
is represented by annotations whereas spatial information is encoded into the
formulae, by using constraints. This leads to a mismatch of conceptual levels
and a loss of simplicity. In STACLP we overcome this mismatch, by defining
a uniform setting where spatial information is represented by means of an-
notations, so that the advantages of using annotations apply to the spatial
dimension as well.

Information induction over spatio-temporal data is mainly an unexplored
field, yet. In this context, [2] suggests two main kinds of information to induce:
meta-rules, i.e., regularities shown along time by the rules obtained in each
snapshot, and evolution rules, i.e., rules computed over pre-computed spatio-
temporal features of entities. So far, very little attention has been paid to the
mining of spatio-temporal classifiers, association rules and time sequences,
while a few proposals exist for spatio-temporal clustering. In addition to the
trivial extensions of spatial clustering methods, which treat time as just an-
other generic dimension, three main approaches can be found in literature,
focusing on the clustering of moving objects: [17] considers generic sequences
together with a conceptual hierarchy over the sequence elements, used to com-
pute both the cluster representatives and the distance between two sequences.

A Declarative Framework for Reasoning on Spatio-Temporal Data 3

In [11], a model-based clustering method for continuous trajectories is pro-
posed, which puts together objects which can be obtained from a common
core trajectory by adding noise with normal distribution. Finally, [9] proposes
a general mapping from any data space to an Euclidean space, where any
standard clustering algorithm can be applied.

In Sects. 2 and 3 we introduce syntax and semantics of STACLP along with
some simple examples, that illustrate its knowledge representation capabili-
ties. In Sect. 4 we deal with the representation of one of the most fundamental
spatio-temporal objects, i.e. the trajectory. In Sect. 5 we set the stage for the
rest of the chapter, by introducing the requirements of a complex application
dealing with the analysis of the behaviour of a nice group of animals, crested
porcupines, living in a natural park of Tuscany (Italy). In Sect. 6 we present
how STACLP allows us to solve part of the above problems by using the de-
ductive capabilities of the language, while Sect. 7 deals with implementing a
clustering method in STACLP, how to specialise it for trajectories, and how
to solve the problems of the application that require such a kind of inductive
reasoning. Finally, Sect. 8 draws some conclusions and outlines future research
directions.

2 STACLP: a Spatio-Temporal Language

In this section we present the language STACLP [20], which extends Temporal
Annotated Constraint Logic Programming [10], a constraint logic program-
ming language with temporal annotations, by adding spatial annotations. The
pieces of spatio-temporal information are given by pairs of annotations which
specify the spatial extent of an object at a certain time period. The use of
annotations makes time and space explicit but avoids the proliferation of spa-
tial and temporal variables and quantifiers. Moreover, it supports both definite
and indefinite spatial and temporal information, and it allows one to establish
a dependency between space and time, thus permitting to model continuously
moving points and regions.

2.1 Time and Space

Time can be discrete or dense. Time points are totally ordered by the relation
<. We denote by 7 the set of time points and we suppose to have a set of
operations (e.g., the binary operations +, —) to manage such points. The
time-line is left-bounded by 0 and open to the future, with the symbol oo
used to denote a time point that is later than any other. A time period is an
interval [r,s] with r,s € T and 0 < r < s < 00, which represents the convex,
non-empty set of time points {¢ | r < ¢t < s}. Thus the interval [0, co] denotes
the whole time line.

Analogously space can be discrete or dense and we consider as spa-
tial regions rectangles represented as [(z1,%2), (y1,y2)], where (z1,y1) and

4 Mirco Nanni, Alessandra Raffaetd, Chiara Renso, Franco Turini

(z2,y2) denote the lower-left and upper-right vertex of the rectangle. Pre-
cisely, [(@1,2), (y1,y2)] models the region {(z,y) | &1 < < 2,41 <y < 12}
Rectangles are the two-dimensional counterpart of convex sets of time points.

2.2 Annotations and Annotated Formulae

An annotated formula is of the form A o where A is an atomic formula and
a an annotation. We define three kinds of temporal and spatial annotations
inspired by similar principles:

at T and atp (X,Y) are used to express that a formula holds in a time or
spatial point.

th I, thr R are used to express that a formula holds throughout, i.e., at every
point, in the temporal interval or the spatial region, respectively.

inI, inr R are used to express that a formula holds at some point(s), in the
interval or the region, respectively. They account for indefinite informa-
tion.

The set of annotations is endowed with a partial order relation C. Given
two annotations « and 3, the intuition is that o C 8 if « is “less informative”
than 8 in the sense that for all formulae A, A8 = A «a. This partial order is
used in the definition of new inference rules. In addition to Modus Ponens,
STACLP has the two inference rules below:

Aa Ca Aa AB y=alfg
ﬂ—,;/— rule (C) y. g rule (L)

The rule (C) states that if a formula holds with some annotation, then it also
holds with all annotations that are smaller according to the partial ordering.
The rule (LI) says that if a formula holds with some annotation o and the
same formula holds with another annotation 8 then it holds with the least
upper bound o U 8 of the two annotations.

Next, we introduce the constraint theory for temporal and spatial annota-
tions. A constraint theory is a non-empty, consistent first order theory that
axiomatises the meaning of the constraints. Besides an axiomatisation of the
total order relation < on the set of points, the constraint theory includes the
axioms in Table 1 defining the partial order on temporal and spatial anno-
tations. The first two axioms state that thI and inI are equivalent to att
when the time period I consists of a single time point ¢. Next, if a formula
holds at every point of a time period, then it holds at every point in all sub-
periods of that period ((th C) axiom). On the other hand, if a formula holds
at some points of a time period then it holds at some points in all periods
that include this period ((in C) axiom). The axioms for spatial annotations
are analogously defined.

A Declarative Framework for Reasoning on Spatio-Temporal Data 5

(at th) att = th[t,1]
(at in) att = inl[t, 1]
(th E) th [81, 82] C th [7‘1,7‘2] & r <s1, 5252
(in E) in [7‘1,7‘2] Cin [81,82] & r <s1, 5252

(atpthr) atp(z,y) = thr[(z,z), (y,y)]
(atpinr) atp(z,y) = inr[(z,x), (y,y)]
(thr E) thr [($17 $2)7 (y17 y2)] E thr [(zlh $’2)7 (yL yé)] A4
#) <z, 22 <an, v <y, v <y
(inr E) inr [(a:’l? $’2)7 (yL yé)] E inr [($17 $2)7 (y17 y2)] A4
#) <z, 22 <an, v <y, v <y

Table 1. Axioms for the partial order on annotations

2.3 Combining Spatial and Temporal Annotations

In order to obtain spatio-temporal annotations the spatial and temporal an-
notations are combined by considering pairs of annotations as a new class of
annotations. Let us first introduce the general idea of pairing of annotations.

Definition 1. Let (A,C4) and (B,Cg) be two disjoint classes of annotations
with their partial order. Their pairing is the class of annotations (AxB,C 4.8)
defined as Ax B = {af,Ba| a€ A, 8 € B} and v1 Ca«p Y2 whenever

(1 = a1B1Ay2 = aef2) V(11 = Broa Ay = faa)) Ao E4 g A 1 C f2)

In our case the spatio-temporal annotations are obtained by considering
the pairing of spatial and temporal annotations.

Definition 2. The class of spatio-temporal annotations is the pairing of the
spatial annotations Spat built from atp, thr end inr and of the temporal
annotations Temp, built from at, th and in, i.e. SpatxTemp.

To clarify the meaning of our spatio-temporal annotations, we present
some examples of their formal definition in terms of at and atp. Let ¢ be a
time point, J = [t1,%2] be a time period, s = (z,y) be a spatial point and
R =[(z1,%2), (11,y2)] be a rectangle.

e The equivalent annotated formulae Aatpsatt and A attatps mean that
A holds at time point ¢ in the spatial point s.

e The annotated formula Athr RthJ means that A holds throughout the
time period J and at every spatial point in R. The definition of such a
formula in terms of atp and at is:

Athr RthJ & Vi€ J Vs € R. Aatpsatt.

The formula A th.J thr R is equivalent to the formula above because one
can be obtained from the other just by swapping the universal quantifiers.

Mirco Nanni, Alessandra Raffaetd, Chiara Renso, Franco Turini

1) thr [(z1, T2), (y1,y2)]th [t1, t2] U thr [(1, 22), (21, 22)]th [t1, 2] =
thr [(z1,%2), (Y1, 22)[th[t1, 2] & y1 < 21,21 S 2,92 < 22

1) axiom obtained by swapping the annotations in (1).

(2) thr [(z1, %2), (y1, y2)[th [t1, t2] U thr [(21, 22), (y1, y2)|th [t1, 2] =
thr [($17z2)7 (y17y2)]th [t17t2] &z < 21,21 < x2,T2 < z2

(2" axiom obtained by swapping the annotations in (2).

(3) thr [(z1, %2), (Y1, y2)[th [s1, s2] U thr [(z1, z2), (Y1, y2)]th [r1, m2] =
thr [(z1,22), (y1,y2)]th[s1,r2] & s1 < 71,71 < 82,82 <72

3" axiom obtained by swapping the annotations in (3).

(4) inr [(z1, 22), (y1,y2)|th[s1, s2] Ul inr [(z1, 2), (Y1, y2)[th[r1,m2] =
inr [(z1,22), (Y1, y2)]th[s1,72] © 51 < 71,71 < 82,82 <72

(5) in[t1,ta]thr [(z1,2), (y1,y2)] U in [t1, to]thr [(21, 22), (21, 22)] =
in[t1, to]thr [(z1,2), (Y1, 22)] <> 1 < 21,21 Sy, 92 < 22

(6) dinfts,ta]thr (21, 22), (y1,y2)] U in[t1, ta]thr [(21, 22), (y1,92)] =
in[t1, to]thr [(z1, 22), (y1,¥2)] © 21 < 21,21 L 22,22 < 22

Table 2. Axioms for least upper bound of annotations

The annotated formula A thr R in J means that there exist(s) some time
point(s) in the time period J in which A holds throughout the region R.
The definition of such a formula in terms of atp and at is:

AthrRinJ & dte€ J.Vs€ R. Aatpsatt.

In this case swapping the annotations swaps the universal and exis-
tential quantifiers and hence results into a different annotated formula
Ain J thr R, meaning that for every spatial point in the region R, A holds
at some time point(s) in J. Thus we can state snow thr R in [jan, mar]
in order to express that there exists a time period between January and
March in which the whole region R is completely covered by the snow. On
the other hand snow in[jan, mar] thr R expresses that from January to
March each point of the region R will be covered by the snow, but different
points can be covered in different time instants.

2.4 Least Upper Bound and its Constraint Theory

For technical reasons related to the properties of annotations (see [10, 20]),
we restrict the rule (U) to least upper bounds that produce valid, new an-
notations, i.e., rectangular regions and temporal components which are time
periods. Thus we consider the least upper bound in the cases illustrated in
Table 2.

Axioms (1), (1), (2) and (2') allow one to enlarge the region in which a

property holds in a certain interval. If a property A holds both throughout a
region R; and throughout a region Ry in every point of the time period I then
it holds throughout the region which is the union of R; and R, throughout 1.

A Declarative Framework for Reasoning on Spatio-Temporal Data 7

Notice that the constraints on the spatial variables ensure that the resulting
region is still a rectangle. Axioms (3) and (3') concern the temporal dimension:
if a property A holds throughout a region R and in every point of the time
periods I; and I then A holds throughout the region R in the time period
which is the union of I and I3, provided that I; and I are overlapping. By
using axiom (4) we can prove that if a property A holds in some point(s) of
region R throughout the time periods I; and Is then A holds in some point(s)
of region R throughout the union of I} and I, provided that such intervals
are overlapping. Finally, the last two axioms allow to enlarge the region R in
which a property holds in the presence of an in temporal annotation.

2.5 Clauses

The clausal fragment of STACLP, which can be used as an efficient spatio-
temporal programming language, consists of clauses of the following form:

Aaf + C,...,Ch,Branf, ..., BmomfBpm (n,m 2> 0)

where A is an atom, «, oy, 8, 8; are (optional) temporal and spatial an-
notations, the C;’s are constraints and the B;’s are atomic formulae. Con-
straints C; cannot be annotated. A STACLP program is a finite set of STA-
CLP clauses.

Ezample 1. Assume that a person is described by his/her name, the activity
and the spatial position(s) in a certain time interval. For instance, from lam
to 10am John sleeps, from 1lam to 12am he has breakfast and then in the
afternoon he goes skiing up to 4pm, while Monica skies from noon to 4pm.
This can be expressed by means of the following clauses.

does(john,sleep) atp (2,12) th [1am,10am].
does(john,eat) atp (2,6) th [1lam,12am].
does(john,ski) inr [(500,2000),(1000,2000)] th [12am,4pm].

does(monica,ski) inr [(500,2000),(1000,1500)] th [12am,4pm].

The temporal information is represented by a th annotation because the prop-
erty holds throughout the time period. Instead the spatial location is expressed
by using an atp annotation when the exact position is known, or by an inr
annotation if we can only delimit the area where the person can be found.

Furthermore, a place can be described by its name and its area represented
by a thr annotation.

place(refuge) thr [(700,710),(1200,1205)].
place(ski) thr [(50,2000),(1000,2000)].

Below we show how some queries involving the spatial and/or temporal
knowledge can be formulated in our language.

8 Mirco Nanni, Alessandra Raffaetd, Chiara Renso, Franco Turini

1. Where is John between 12am and 2pm?
does(john,_) inr R in [12am,2pm]
The answer to this query consists of (possibly different) regions where
John stays during that time period. We use the in annotation because
we want to know all the different positions of John between 12am and
2pm while the inr annotation allows one to know the region John is in
during that time period, even if his exact position is unknown.
If we asked for does(john,_) atp R th [12am,2pm] then we would have
constrained John to stay in only one place for the whole time period.
The query does(john,_) atp R in [12am,2pm] asks for definite positions
of John sometime in [12am, 2pm).

2. Where is John while Monica is in the refuge?
does (john,_) inrRthI, does(monica,_) inrR1thI, place(refuge) thrR1
This query is a composition of a spatial join and a temporal join.

3 Semantics of STACLP

In the definition of the semantics, without loss of generality, we assume all
atoms to be annotated with th, in, thr or inr labels. In fact, at ¢ and
atp (z,y) annotations can be replaced with th[¢,¢] and thr [(z, z), (y,y)] re-
spectively by exploiting the (atth) and (atpthr) axioms. Moreover, each
atom in the object level program which is not two-annotated, i.e., which is la-
belled by at most one kind of annotation, is intended to be true throughout the
whole lacking dimension(s). For instance an atom A thr R is transformed into
the two-annotated atom A thr Rth [0, cc]. Constraints remain unchanged.
The meta-interpreter for STACLP is defined by the following clauses:

demo(empty). (1)
demo((B1,B2)) < demo(By), demo(Bs) (2)
demo(A af) <+ a C 6,8 C v, clause(A §v, B), demo(B) (3)
demo(A alﬂl) A alﬂl U (1262 = aﬂa o Ea, BI E 67 (4)
clause(A o161, B), demo(B), demo(A asf32)
demo(C) « constraint(C),C (5)
A clause A af + B is represented at the meta-level by
clause(A af, B) + valid(a), valid(8) (6)

where valid is a predicate that checks whether the interval or the region in
the annotation is not empty.

The first two clauses are the ordinary ones to solve the empty goal and
a conjunction of goals. The resolution rule (clause (3)) implements both the
Modus Ponens rule and the rule (C). It states that given a clause Ady «+ B
whose body B is solvable, we can derive the atom A annotated with any

A Declarative Framework for Reasoning on Spatio-Temporal Data 9

annotation af such that a C § and 8 C ~. Such constraints are processed
by the constraint solver using the constraint theory for temporal and spatial
annotations shown in Sect. 2.2. Clause (4) implements the rule (L) (combined
with Modus Ponens and rule (C)). It states that if we can find a clause
Aa181 + B such that the body B is solvable, and if the atom A can be
proved with annotation asBs2, then we can derive the atom A labelled with
any annotation less or equal than the least upper bound of a; 8, and asfs.
The constraint a; 81 Ll agffs = af is solved by means of the axioms defining
the least upper bound introduced in Sect. 2.4. Clause (5) manages constraints
by passing them directly to the constraint solver.

4 Modelling and Representing Trajectories

One of the basic forms of spatio-temporal information is given by spatio-
temporal objects, namely objects which move along time within a spatial
environment. Therefore, in order to properly approach several spatio-temporal
analysis problems, it is essential to model and represent such objects and their
movement in a suitable way.

In this section, we will briefly summarise some of the most common spatio-
temporal data models presented in literature, and thus we will introduce the
model adopted in this work to represent the movement of spatio-temporal
objects, together with its formalisation within the STACLP language.

Spatio-Temporal Data Models

Although a quite large number of ideas were proposed in literature for mod-
elling spatio-temporal data (see for example [3]), in recent years only a few
proposals have been widely discussed. Moreover, no general purpose database
system does exist which integrates spatial, temporal and thematic information
in a satisfactory way.

In what follows, we provide a brief overview of four of the main data models
recently discussed in literature.

Parametric 2-spaghetti: Chomicki and Revesz [6] have introduced a new
model, called Parametric 2-spaghetti model, that generalises the 2-spa-
ghetti model (able to represent points, lines and polygons) by allowing an
interaction between spatial and temporal attributes. Vertex coordinates
can now be linear functions of time, thus permitting to model continuous
movements along time. As an example, a dynamic region 71, modelled as
a dynamic triangle, could be represented by a set of generalised tuples of
the following kind:

[ID]z lyle’ [y’ |2"]y" |From|To]
|3 3(10(10|20(11 — ¢|8 10
r1 113 —=¢13(101¢ |2t |1t —9 (10 00

10 Mirco Nanni, Alessandra Raffaetd, Chiara Renso, Franco Turini

Notice that the values in the relation are parametric in the time ¢, whose
value ranges, in each tuple, between From and To. Query languages for
the Parametric 2-spaghetti data model have not been defined yet. This
model has been used in [5] to animate spatio-temporal objects.

Type lifting: In this approach, proposed by Erwig, Giiting, Schneider and
Vazirgiannis [7, 14], collections of abstract data types for spatial values
changing over time are defined. Essentially, the authors introduce data
types for moving points and moving regions together with a set of opera-
tions on such entities. The design of the model for spatio-temporal data
is based on a type constructor 7 which transforms any given atomic data
type « into a type 7(a) = time — a where time = R, that is a continuous
model of time is supported. In particular this constructor is applied to two
spatial data types, point and region, allowing one to represent two funda-
mental abstractions moving point (mpoint) and moving region (mregion).
Then a set of operations are defined on these types, such as the distance
mdistance : mpoint X mpoint — 7(real), which returns the distance be-
tween two moving points at all times. The presented data types can be
embedded into any DBMS data model as attributes data types, and the
operations be used in queries.

ST-simplexes: In this model, introduced by Worboys [24], each elemental
spatial object — called simplex and composed by either a single point, finite
straight line segment or triangular area — is assigned with a bitemporal
element, which is a finite set of pairs of intervals, representing respectively
the database and the event times of the object. A complex spatial object,
temporally referenced, is called ST-complex and it is modelled by a finite
set of ST-simplexes, subject to some constraints that we do not report.
The query language provides operators to make the union, difference and
intersection of two ST-complexes, and the selection on the temporal and
spatial component. Moreover, it is also given a topological operator to
return the boundary of an ST-complex.

In the Worboys’ model, the temporal and the spatial dimensions are in-
dependent. This prevents from describing spatial relations which may be
parametric w.r.t time, i.e. w.r.t their evolution, for instance the relation-
ship that exists between time and the area covered by an incoming tide.

Constraints: The idea behind Constraints Databases is to finitely repre-
sent infinite relations by means of (finite) sets of constraints over a given
domain (the linear constraints over rationals or real polynomial con-
straints is often used as logical theory of constraints). Among the ap-
proaches presented in literature dealing with spatial information, Con-
straints Databases is the only one to provide a uniform data model for
both time and space. In fact, if we consider as class of constraints linear
polynomials, we can model both temporal and spatial data with efficient
implementations.

In particular, in order to allow an efficient evaluation, Grumbach et al.
[13] require that the d-dimensional databases to be considered consist

A Declarative Framework for Reasoning on Spatio-Temporal Data 11

only of relations with a bounded orthographic dimensionl < d, informally
defined as the maximal number of dependent components in the relation.
A typical setting consists of relations over Q? x Q, the first component
for space and the second one for time, with no interaction among the two,
obtaining an orthographic dimension equal to 2. An example is:

object(S,z,y,t) : —y <6,1<y,5x—y—34=0,t <8.
object(S,z,y,t) : —7T<z,z <11,z —4y—-3=0,t > 8.

Notice the absence of interaction between time and the two spatial coor-
dinates.

A Trajectory Data Model

From an abstract point of view, the movement of a spatio-temporal object
0 — i.e., its trajectory — can be represented by a continuous function of time
which, given a time instant ¢, returns the position at time ¢ of the object in a
d-dimensional space (typically d € {2,3}). Formally o : Rt — R¢.

In a real-world application, however, object movements are given by means
of a finite set of observations — or control points —, i.e. a finite subset of points
taken from the actual continuous trajectory. Moreover, it is reasonable to
expect that observations are taken at irregular rates within each object, and
that there is not any temporal alignment between the observations of different
objects. As a result, it is possible to have couples of objects for which at all
time points the observation of at least one of the objects is missing, as in
the simple examples depicted in Fig. 1, where the empty and filled circles
represent the observations of two different objects. A very basic operation

Time Time Time

(a) (b) (e)

Fig. 1. Raw control points and possible reconstruction of trajectories

such as the comparison between objects, then, cannot be performed by simply
comparing their raw observations. To allow the comparison between objects,
an (approximate) reconstruction of their full trajectory is needed. Among
the several possible solutions, we can distinguish three simple yet interesting
categories:

12 Mirco Nanni, Alessandra Raffaetd, Chiara Renso, Franco Turini

o Global regression: if the trajectories are known to follow a simple regular
behaviour which can be represented by some analytical time-dependent
expression, the movement of an object o can be described by a single
regression function. Fig. 1(a) shows an example where a linear regression
function is used. Notice that the resulting curve does not always touch all
the given control points.

o Local interpolation: although there is not a global function describing the
whole trajectory, objects are assumed to move between the observed points
following some rule. For instance, a linear interpolation function models a
straight movement with constant speed, while other polynomial interpo-
lations can represent smooth changes of direction. The above mentioned
linear (local) interpolation, in particular, seems to be a quite standard
approach to the problem, essentially adhering to Chomicki and Revesz’s
parametric 2-spaghetti model. Fig. 1(b) depicts a simple example.

o Domain knowledge-based reconstruction: in principle, when no interpola-
tion function (global or local) is known, the position of objects out of the
control points can be any point in R¢. However, sometimes a “domain
knowledge” of a different kind can help to understand how objects behave
between observed points, exploiting information about either the objects
or the space they move in. Typically, such knowledge is expressed as con-
straints on the position of objects, which might strongly narrow the range
of choices of their movements. A simple example, graphically shown in
Fig. 1(c), is given by information on the maximum speed that objects can
reach: in this case all positions of an object in space-time must fall within
(hyper-)cones having the edge in a control point, axes parallel to the time
axes, and aperture representing the maximum speed of the object. Thus,
the set of all possible positions of such object between two control points
can be obtained as the intersection of the two corresponding (hyper-)cones
— corresponding to the gray areas of the picture.

In this work, we will focus on the second proposal, following the paramet-
ric 2-spaghetti approach, modelling the movement of objects through linear
interpolation between control points and assuming stationarity beyond the
extreme control points. As mentioned, this solution yields a good tradeoff
between flexibility and simplicity.

Trajectory Representation

In this section we show how trajectories can be modelled in STACLP. Repre-
senting trajectories in STACLP has several benefits. First of all, the language
allows for a high level representation and manipulation of time as well as
space thus providing primitive support for reasoning on spatio-temporal data.
Secondly, it allows us to mix an inductive and deductive steps to perform
complex kinds of analysis on the behaviour of moving objects as we will show
in Sect. 6.

A Declarative Framework for Reasoning on Spatio-Temporal Data 13

Given an object o the observations which describe the trajectory of the
object is a finite set of triplets (z,y,t), where z and y are the coordinates
of the object tracked at time t. As mentioned above, the method adopted in
this work to reconstruct the full trajectory from the observations computes
the linear interpolation between consecutive localisation points. This kind
of interpolation is particularly easy to represent since given two localisation
points (z1,y1,t1) and (22, ya, t2) with no other localisation in the time interval
[t1,t2] (i-e., the two observations are consecutive), we have that the estimated
coordinate at time ¢, with ¢; < ¢ < s, is (z,y) where:

(—z1)(ta—t1) — (w2 —21)(t—t1) = 0, and
(y—y)la—t1) — (g2 —y)t—t1) = 0
This approximation of trajectories can be easily modelled in STACLP: the
localisation points are represented by using the atp/at annotation and then
the straight line between the two end points is expressed as a constraint.
Specifically, the N localisations of each object o, (z;,y;, t;) fori =1,..., N,
can be represented by the following N STACLP facts:

fix(o) atp (x1, y1) at ti
fix(o) atp (x2, y2) at t2

fix(o) atp (xN, yN) at tN

Such localisations will define the core of the trajectory of object o, which
is then completed by defining all the intermediate points through linear inter-
polation using the following STACLP rules:

traj(0) atp (X, X) at T :- fix(0) atp (X, Y) at T.

traj(0) atp (X, Y) at T :- fix(0) atp (X1, Y1) at T1,
fix(0) atp (X2, Y2) at T2,
succ(T1,T2), T1 < T < T2,
X=(X1(T2-T)+X2(T-T1))/(T2-T1),
Y=(Y1(T2-T)+Y2(T-T1))/(T2-T1).

In the body of the second rule, approximated points (z,y) are computed
by using the equation for the line passing through two given points, shown
above. The presence of the (standard) successor predicate succ, defined as
true for all and only the couples of (strictly) consecutive localisation points,
ensures that no other observation exists between times #; and #s, i.e., the
interpolation is performed only between consecutive localisation points.

5 An Application Example

Behavioural ecology is the science which studies animal behaviour with special
interest in the relation to the environment where animal lives. This can be an

14 Mirco Nanni, Alessandra Raffaetd, Chiara Renso, Franco Turini

interesting application domain for our framework since the problems coped
with require the analysis of large spatio-temporal datasets and would definitely
benefit from the availability of high level reasoning capabilities.

A typical technique used by biologists to collect information on the stud-
ied animals consists of tracking their movements by means of special collars
which the animals are equipped with. In this way, large datasets containing
spatio-temporal localisations, called fizes, of tracked animals are built. Each
fix includes the identifier of the animal, the position expressed by the spatial
coordinates X, Y and the time T of the localisation.

The set of fixes allows to view animals as spatio-temporal objects. The
study of their trajectories can be quite helpful in determining the home range
of animals, i.e. their life area, varying along the time, and it can be useful to es-
tablish relationships with other animals in order to understand the modalities
of social and spatial aggregation.

The geographical features of the area of interest, such as vegetation, rivers,
buildings, roads, which play a basic role in the analysis, are usually stored in a
GIS, which thus represents the natural tool support for the biologists. Several
commercial GISs offer a support for spatial analyses. For instance ArcView 3.2
provides a number of extensions, such as Spatial Analyst [8] by ESRI and
Movement [15] by USGS Alaska, that implement a set of biological/statistical
functions for home range calculations and other spatial analyses applied in
animal ecology. However, the lack of tools to analyse in a correlated way
space and time makes such systems not completely satisfactory when dealing
with these applications.

To exemplify the usefulness of spatio-temporal analysis, we next list a num-
ber of relevant problems in behavioural ecology specifically involving spatio-
temporal aspects. Such questions emerge from a research leaded by biologists
from the University of Siena about the behavioural ecology of crested porcu-
pines in the Maremma Regional Park (Tuscany, Italy) [4]. It is worth recalling
that the crested porcupine is mainly nocturnal, lives in natural or artificial
burrows and there is very few information available on the behaviour of such
species. For this reason there is currently much interest, in the animal ecology
field, in studying its habits.

Den Localisation

Crested porcupines are nocturnal: they spend the day inside dens, typically
burrows on the ground, whereas during the night they leave their dens looking
for food. They usually change dens over time, and it is particularly relevant for
researchers to determine when this happens and where the new den is located
in order to formulate some hypotheses on the reasons of the displacement
as well as to discover unknown behavioural patterns. A technique used by
biologists to detect den locations is called homing-in. Essentially the researcher
physically follows the signal of the radio collar of an animal by means of a
portable radio receiver and tries to reach the animal when it is inside the den.

A Declarative Framework for Reasoning on Spatio-Temporal Data 15

Unfortunately, homing-in is a quite expensive procedure and thus it cannot
be applied extensively. Usually it is done on a bi-monthly basis thus creating
a two months gap where the location of dens is unknown. Therefore a strong
concern consists of understanding where dens are located in the period of
time in which there is no homing-in localisation. This can be done exploit-
ing the animals fixes and, in particular, analysing those fixes that have been
taken between dawn and sunset, when, according to the expert knowledge
the crested porcupine stays inside or close to the den. Given the set of dawn-
sunset fixes a probable den can be inferred as a spatial location that has in
its neighbourhood a high number of such fixes.

Observe that this kind of analysis requires a correlation of spatial and
temporal information since relevant fixes have a specific temporal property
(they have been taken between dawn to sunset) and, by using such data, a
location which represents a possible den, is determined considering a spatial
neighbourhood property such as a high density of fixes.

Relations Among Animals

For understanding the habits and the social behaviour of animals it is ex-
tremely relevant to discover the relationships existing among individuals. No-
tice that this research includes a wide range of cases such as finding pairs of
individuals of different sex that move together and possibly share the same
den (couples), or groups of individuals that move together (herds) or cou-
ple/groups of individuals that avoid each other (territoriality).

To assess the degree of association among individuals, a possibility con-
sists of comparing the overlap of their home ranges, estimated at given time
intervals (typically one month or, more generally, k£ months). However, such
method is quite raw because it can happen that animals stay in common ar-
eas but in different periods of time or the overlap might be so large that the
simultaneous presence of the animals in the area does not ensure that they
are really close to each other.

A more precise procedure requires the calculation of the inter-individual
distance between animals localised at the same time. We say that two fixes are
contemporary if they refer to localisations of animals in the same place and
at the same time, i.e., we consider a kind of spatio-temporal closeness among
individuals. Since the tracking technique usually presents several sources of
error, in the analysis two fixes are assumed to be contemporary if they fall
within a given time interval and the corresponding localisations are within a
certain distance. The effective values for the temporal and spatial thresholds
are established by biologists.

Analysing this kind of inter-individual distance between animals, it is pos-
sible to make hypotheses about which animals can be considered a couple,
form a herd, or avoid other individuals. For instance, two animals of different
sex are likely to be a couple in a given period of time if they have a high quan-
tity of contemporary fixes in the considered interval. On the other hand, an

16 Mirco Nanni, Alessandra Raffaetd, Chiara Renso, Franco Turini

animal avoids another one if their inter-individual distance is always greater
than a minimal fixed value.

Changes in the Home Ranges

One of the basic objectives in the analysis of animal behaviour is a better
understanding of how the animals change their home ranges along time. This
objective requires, among other tasks, the detection of seasonal variations
of the home ranges, both in location and size, and also, to infer the factors
determining the dimensions of home ranges for these species.

A simple approach to face this problem consists of partitioning the time
period covered by the analysis, [tstort, fend], int0 consecutive time sub-intervals
of proper duration AT, thus evaluating the home ranges within each sub-
interval and analysing the sequence of results obtained. However, in general,
determining a suitable value for AT results to be not easy. On one hand, it has
to be large enough to allow the computation of a significant home range, but,
on the other one, it has to be small enough to catch swift changes — swiftness
being a concept which is highly relative and dependent on the animal species
under analysis. In several contexts, such as the study of the crested porcupines,
analysts have not enough a priori information on the animals under study to
deduce a right time interval. In some cases, moreover, it is even possible that
no AT value satisfying the two constraints mentioned above exists at all. The
definition of AT is often subjective and conditioned by our perception of the
temporal units (weeks, months, seasons, years), leading to choose temporal
intervals which are shifted w.r.t. the observed phenomena. Therefore, there
is a clear need for a technique which provides an estimate of home ranges,
regardless of the a-priori definition of time intervals.

A simple solution to the above mentioned problem, is to calculate home
ranges in a “continuous” way within a given time interval (e.g., a season). The
“continuity” can be obtained by replacing the time partitioning approach, de-
scribed above, with a temporal sliding window: now, two parameters §; and
W, are defined, and home ranges are computed on overlapping time intervals,
each of duration W; and each shifted of §; w.r.t. the previous one, starting
from interval [fstort,tstart + We]. Notice that the partitioning approach de-
scribed first, is just a particular case where Wy = é; = AT For example, with
tstare = “January 1st” and AT = “30 days”, the partitioning approach would
result in home ranges computed separately (approximatively) on each month
of the year. In the case of animals which change their life areas at a quicker
rate (e.g., once a week), the resulting home ranges would mix together sev-
eral distinct movements, and thus would not provide a sound description of
the animal activity. With sliding windows, on the contrary, setting W; =30
days” and 6; = “1 day”, we would obtain the home ranges for the intervals
from January 1st to January 31st, from January 2nd to February 1st, and so
on. This way, even animal movements at a scale finer than the window size
produce a detectable change in the home range — the larger and the longer

A Declarative Framework for Reasoning on Spatio-Temporal Data 17

is the animal movement, the larger is the change in the home range, in a
continuous way —, and thus distinct movements can be distinguished between
each other.

We notice that computing home ranges over a sliding window produces
a smoothly-evolving home range, which is perfectly analogous to the smooth
curve obtained by applying any (of the several well known) sliding window-
based smoothing operator on a time series. Such operators have a wide ap-
plication in several fields, such as noise-reduction filters in signal processing
tools. In this sense, the sequence of home ranges obtained for an object o
can be viewed as an alternative, improved representation of its trajectory.
Therefore, depending on how home ranges are computed and the complexity
of their representation, they can be used in some analysis tasks in place of the
original trajectory, in order to improve the quality of the results (e.g., in any
analysis where the global trend of 0’s movement is relevant, while its single
movements are uninteresting and potentially misleading).

Spatio-Temporal Relations Between Localisations and Events

The spatio-temporal relation between an animal and a particular event, de-
fined in time and space, is one of the problems which are often addressed
by animal ecology researchers. Indeed very frequently, there is a need for as-
sessing whether and to what extent an event (e.g. a change in a crop cover,
a hunting chase, a meteorological or geo-morphological occurrence) defined
in time and space, has caused variations in the movement of the monitored
animals.

Since the problem requires a co-location analysis task (between animals
and events), it presents difficulties which are similar to those mentioned for the
localisation of dens. However, since general events have more complex relations
with moving animals than simple dens, several additional issues arise.

The first is that spatial and temporal limitations of the effect of the event
on animals, must be defined. For instance, we could exclude all events taking
place within a spatial distance from individual greater than a fixed threshold
or those events occurring later than the occurrence of the localisation itself.
Alternatively one could exclude the events occurring before a given period of
time.

Therefore, we should expect that if an event concretely influences the
animals, it would then “attract” or “reject” them, or in general modify in
some way the movement they performed before the event, to an extent which
is proportional to their spatio-temporal distance.

Moreover this technique should allow us to estimate the time interval be-
tween the occurrence of the event and its effects (as well as their end) on the
animal.

These general problems allow several different concrete formulations, which
can require simple or complex analysis tasks, mainly depending on the as-
sumptions that can be made.

18 Mirco Nanni, Alessandra Raffaetd, Chiara Renso, Franco Turini

In a simple setting, we can assume that the event has visible effects on
the level of single animals (thus not requiring the concept of herd or group),
and that such effects can only be of the attraction and rejection types. In this
case, the analysis task requires to compute spatio-temporal distances between
animals and events, in order to find out which animals might potentially be
influenced by which events. Therefore, for each pair (event, animal), the exis-
tence of a rejection or attraction movement should be checked, by analysing
how the spatial distance between the pair changes after the event.

In a more complex situation, we could be required to view animal groups
(e.g., herds) as a whole. This is particularly true when either (i) the behaviour
of a single animal is not significant, and thus it is potentially misleading (e.g.,
it could have an anomalous reaction to the event, not representative of its
species or its group); or (ii) we are simply interested in comparing the be-
haviour of different herds; or (iii) the event influences the animals by altering
some properties of the group which are not evident by looking at its sin-
gle members (e.g., the event could induce the group to compact itself, as
a self-defensive reaction, even though its members movement is not sensi-
bly altered). In this case, the notion of animal group has to be defined and
computed, prior to evaluate the spatio-temporal nearness between animals
(considering each group as a whole) and events. Then, the candidate groups,
i.e. those which were close enough to an event to be potentially influenced,
are analysed in order to assess which ones show a behavioural alteration w.r.t.
their corresponding events. The latter step will require a suitable formalisa-
tion of “behaviour change”, whose complexity can greatly vary depending on
the properties it analyses.

6 Support for Spatio-Temporal Analysis in STACLP

In the previous section we have described some examples of analysis of spatio-
temporal data which are relevant in a specific application domain. Generally
speaking a framework for dealing with spatio-temporal (but also general data)
should offer the ability of querying such data and of reasoning over them.

Current systems allow the user to exploit some consolidated mechanisms
such as SQL-like queries, statistical functions and some spatial operations. De-
spite the fact that these systems provide efficient and mature technology to
query standard relational or spatial data, they do not offer the user high level
operations to handle the special time and space related dimensions. Indeed,
nowadays the development of a spatio-temporal application with commercial
systems requires the programming of some ad-hoc components by means of
procedural languages provided by the system itself for customisation pur-
poses. However, the absence of specific spatio-temporal operations makes the
customisation of applications extremely complex, especially for non-expert
users.

A Declarative Framework for Reasoning on Spatio-Temporal Data 19

In our opinion, more sophisticated mechanisms are needed to provide the
user with high-level and, at the same time, more general support for reason-
ing. We believe that the language for “programming” the extensions should
be a real knowledge representation language, or, better to say, a very high
level query language as much as the last extensions to SQL are a declara-
tive programming language for extending relational databases. This view is
shared by a number of other researchers, who all work on the integration of
declarative paradigms and GISs [13, 25, 23].

Our proposal is mainly based on the use of computational logics as knowl-
edge representation formalisms and as inference engine supporting reasoning.

In particular, in our framework both deductive and inductive inferences
are conciliated as well as enriched with spatio-temporal primitive operations.
Rules can be used to represent general knowledge about the collected data,
and deductive capabilities can provide answers to queries that require some
inference besides the crude manipulation of the data. On the other hand,
induction is in some sense the inverse of deduction, that is deriving general
principles from concrete data, therefore synthesising new knowledge from data
or experience.

Next subsection focuses on deduction, whereas Sect. 7 is devoted to in-
troduce mechanisms to support inductive analysis and it describes how these
tools can be successfully used in our case study.

6.1 Deductive Analysis in STACLP

In this section we will show how the deductive capability of our language al-
lows us to solve several problems presented in Sect. 5, namely, finding out the
estimated position of the den whenever its real location is unknown, discov-
ering the animals which are likely to be a couple and determining how the
home range of a given animal changes.

As described in Sect. 4, we model the spatio-temporal localisations of each
crested porcupine by a collection of facts of the kind:

fix(id) atp (x,y) at t.

specifying the position x,y, and the time t (expressed in seconds) of a locali-
sation for the animal id.

Below we will show the STACLP code that implements the expert cri-
teria by which we successfully solve some of the questions proposed by the
biologists. The rules are slightly simplified by removing some implementa-
tion details, like the use of the predicate constraint which indicates that the
atom is a constraint. Such a presentation allows us to focus on the knowledge
representation ability of the language. Furthermore the code can be made ex-
ecutable by a simple precompilation step. The rules extensively use the Prolog
meta-predicate £indall (X,G,L) which computes the list L of elements X that
satisfy the goal G.

Let us now formalise the questions we want to cope with. From the expert
knowledge we know that the crested porcupine stays in its den during the day

20 Mirco Nanni, Alessandra Raffaetd, Chiara Renso, Franco Turini

whereas it usually spends the night far from it. Hence, in order to determine
the position of the den we collect all the fixes of the animal ranging between
an hour before dawn and an hour after sunset, the idea being that in this time
period the animal is probably close to its den. The rules that implement our
analysis criteria are the following;:

possible_loc(Id,Lloc) at T :-
findall(loc(X,Y), (fix(Id) atp(X,Y) at T1, dawn sunset(T1) at T),
Lloc).
dawn_sunset(T1) at T :- light(D,S) at T, D-3600 <= T1, Tl <= S+3600.

prob_den(Id,Rad,Prob,L) in [T1,T2] :- possible_loc(Id,Lloc) in [T1,T2],
neighbour_list(Lloc,Rad,Prob,L).

The first clause returns the list of positions Lloc of the animal Id between
dawn and sunset in a certain day. The predicate dawn_sunset, occurring in
this rule, checks whether the time T1 of the localisation falls between one
hour before dawn and one hour after sunset of the day T (i.e., the day time
T belongs to). Notice that, since the dawn and sunset times vary along the
year, the predicate 1ight is used to record a monthly estimate of such times.

The third clause extracts from the list of the localisations computed by
the predicate possible_loc the positions which are likely to be dens. The
predicate neighbour 1list (not defined for sake of brevity) selects those po-
sitions whose neighbourhood (with radius Rad) includes a great quantity of
fixes between dawn and sunset (precisely greater than the value Prob). This
quantity is estimated by considering the ratio between the number of fixes in
the neighbourhood and the total number of fixes for the given animal in the
period of time of interest.

Consider now the second problem illustrated in Sect. 5, namely providing
a high level mechanism to determine relations among individuals. We focus
here on the specific problem of finding possible couples, that is animals of
different sex that move together. In order to find out the likely couples we
exploit the notion of contemporary fixes: two fixes are contemporary if they
are within a certain distance and in a certain time interval. We recall that the
effective values for the threshold have to be chosen by the domain experts.

At this point we compute the number of contemporary fixes for a pair of
animals and according to this number the expert can decide whether the pair
is a couple or not.

couple_in day(Id1,Id2,R,S,N) at T :-
findall(c(Id1,Id2), (fix(Id1) atp(X1,Y1) at Ti,
fix(Id2) atp(X2,Y2) at T2,
sex(Id1l, S1), sex(Id2, S2), S1 != 52,
contem(X1,Y1,X2,Y2,R,S,T1,T2) at T),
L),
length(L,N).
contem(X1,Y1,X2,Y2,Rad,Sec,T1,T2) at T:- in day(T1,T2) at T,
dist(X1,Y1,X2,Y2,D), D<Rad, abs(T2-T1) <Sec.

A Declarative Framework for Reasoning on Spatio-Temporal Data 21

couple(Id1,Id2,R,S,Ratio) in [T1,T2] :-
couple_in day(Id1,Id2,R,S,N) in [T1,T2],
couple_in day(Id1,Id2,1000000,S,M) in [T1,T2],
Ratio is (N/M).

The predicate couple_in_day returns the number N of contemporary fixes
in a day for the pair of crested porcupines Id1,Id2. Two fixes are considered
contemporary if their spatial and temporal distance is bounded by R and S
respectively, as encoded by the predicate contem. The atom in day(T1,T2)
at T checks whether either T1 or T2 is within the day T. Finally, the predicate
couple returns the ratio between the number of contemporary fixes of the
crested porcupines Id1,Id2 and the number of observations of Id1,I1d2 within
S seconds at arbitrary distance (concretely this is obtained by setting a very
large bound for the distance parameter) in a certain time period.

Finally, we show the STACLP code to compute a representation of animal
home ranges which can enable an effective detection of their changes, following
the ideas presented in Sect. 5.

We recall that we want to compute the home range of an animal within a
given time interval [t_start,t_end] in a “continuous” way. Concretely, home
ranges are computed on overlapping time intervals, each of duration Wt and
each shifted of ét w.r.t. the previous one. We assume that Wt <= t_end -
t_start, i.e., at least one of such intervals can fit in [t_start,t_end].

homerange (Fix_list, Home) :- <ad hoc query/external call>
home(Id, Home) at t_start:- findall((T,X,Y),
(fix(Id) atp (X,Y) at T, T>= t_start, T<t_start+Wt), Fix_ list),
homerange (Fix_list, Home).
home(Id, Home) at T:- home(Id, _) at T_prev,
T=T_prev+it, T + Wt <= t_end,
findall((T_fix,X,Y),
(fix(Id) atp (X,Y) at T_fix, T_fix >= T, T_fix < T+Wt),
Fix_list),
homerange (Fix_list, Home).

Given a list of fixes, the predicate homerange returns the corresponding
home range Home by simply calling a routine provided by an external applica-
tion. More details on the use of built-in predicates to directly invoke external
functions can be found in [18, 21].

The predicate home returns the home range Home for an animal Id at
regular time points, i.e. at t_start and at time points shifted from t_start
of a multiple of dt. The first rule states that the home range for animal Id at
the time instant t_start is obtained by finding all the fixes included in the
interval [t_start, t_start+Wt] and then applying the home range routine
to these fixes. The second rule manages the remaining time points and is
defined in a similar way: it computes the home range using the fixes within
the interval [T, T+Wt], provided that T is shifted from t_start by a multiple
of 6t and T+Wt <= t_end.

22 Mirco Nanni, Alessandra Raffaetd, Chiara Renso, Franco Turini

It is worth noticing how the use of a declarative language in general, and
STACLP in particular, which supports spatio-temporal reasoning, allows for
a simple, compact and readable formalisation of the expert knowledge as well
as it provides a very expressive query language. Moreover, STACLP offers
the ability of performing external calls to ad-hoc functions provided by in-
dependent applications. These features make the STACLP code a kind of
abstraction level over the “low level” tools used by domain experts. Actually,
we do not intend STACLP as a framework to replace existing specialised sys-
tems, on the contrary, it should be integrated with these systems, thus it can
be considered as a “middleware” in which very sophisticated spatio-temporal
reasoning can be performed.

7 Inductive Analysis in STACLP

As seen in the previous section, deductive reasoning can be useful to solve
several analysis problems which essentially require to find entities and values
having some, possibly complex, properties. The STACLP language already
showed to have the expressive power needed to fully formalise — and thus to
solve — such problems. Moreover, thanks to its high-level nature, in most cases
the formalisation step is simple and intuitive, yielding a very user-readable
STACLP program.

However, dealing with more complex analysis tasks, it is quite common to
meet, concepts and abstract entities whose definition through deductive rules
can be extremely difficult. It is especially the case when only vague, ambiguous
or incomplete formalisations of the concept are available. A simple example,
already introduced in this chapter, is the notion of animal group, or herd.
While its meaning is intuitive and clear from a human view-point, formalising
it can be difficult and highly dependent on the specific application — that is
to say, a general definition of herd, suitable for any context, does not exist. In
many cases, a suitable solution to this problem requires the eztrapolation of
new information from those already available. In other words, knowledge in-
duction capabilities can be needed to properly tackle some difficult problems.

For this reason, the STACLP language can be fruitfully extended with
induction capabilities, such as data mining algorithms. In this section we show
(i) how a basic data mining tool, the k-means clustering algorithm, specifically
tailored around trajectories, can be defined as STACLP rules, and (ii) how
it can be used to provide a solution for some of the more complex problems
introduced in Sect. 5.

7.1 Clustering

The clustering task is aimed at identifying clusters embedded in the data,
i.e. to partition (although not necessarily in a crisp way) the dataset into
collections of data objects, such that within each partition the objects are

A Declarative Framework for Reasoning on Spatio-Temporal Data 23

“similar” to one another, while they are “different” from the objects con-
tained in other partitions. The greater the similarity within the group, and
the greater the difference between groups, the better or more distinct the
clustering. In our context, the aim is to partition the moving objects which
populate our database, especially animals, into groups of individuals following
similar trajectories.

Among the classical clustering algorithms, K-means is one of the best
known and widely used, for its simplicity and its low computational complex-
ity. It is a centre-based algorithm, meaning that clusters are represented by
means of artificial objects (the centres or representatives) which summarise
the properties of all the objects in their cluster. The k-means algorithm, de-
scribed by the following pseudo-code, is essentially an iterative convergence
process which tries to find “stable” centres:

K-means

1. Select k random points as initial centres;
2. REPEAT
for all points p
Assign p to its closest centre;
for all clusters C
Re-compute the centre of C;
7. UNTIL no centre changed in last iteration or max n. iterations reached;

S O Lo

The general k-means clustering schema can be instantiated to a specific
k-means algorithm by specifying the two key operations used in the schema:
(i) computing the distance between two objects, and (ii) computing the repre-
sentative of a set of objects (i.e., the centre of a cluster). Different definitions
for these two steps can yield completely different notions of clustering.

The most straightforward and most common way of computing cluster
centres in standard contexts where objects are described by vectors of basic
attributes (e.g., the coordinates of points in a 2-dimensional space) is to define
the attributes of the centre as the average of the values taken by the objects
in the cluster. The extension of this idea to the spatio-temporal context is
quite simple, since trajectories are essentially moving points, thus providing a
very natural and intuitively sound instantiation of the centre computation: a
centre will be an object whose position at time ¢ is the average of the positions
of all objects in the cluster at time .

On the contrary, it is more difficult to find a single most natural instan-
tiation of the distance operation between objects, although some definitions
exist which can cover some common concrete problems. For this reason, we
first provide the STACLP rules which define a k-means algorithm for trajec-
tories, independently of the distance definition. Later on, a set of possible
choices for the distance function is given, together with the implementation
of one of them.

24 Mirco Nanni, Alessandra Raffaetd, Chiara Renso, Franco Turini

For ease of presentation, we assume that k is the (fixed) number of clusters
to find, and all objects to be clustered have an Id of the form “objs(name_of
object)”.

objs_to_cluster(0_list) :-
findall(X, (fix(X) atp (_,.) at _, X=objs(.)), 0_list).
assign(Iter, [1, [1).
assign(0, [A1]A],[0bj1[0bjs]) :- K=random(k),
Al=cluster(0bj1,K), assign(0, A, Objs).

assign(Iter, [A1]A],[0bj1]0bjs]) :- Iter>0,

closest(Iter-1, 0bjl, Cluster),

Al=cluster(0bjl,Cluster), assign(Iter, A, Objs).

The objs_to_cluster predicate defines the set of objects to be clustered,
which can be easily customised by rewriting the body of its rule with any
suitable criterion (here we selected all objs(X) objects having some fixes de-
fined). For any iteration Iter, the assign predicate associates every object
with its closest cluster centre, based on the results recursively obtained at
the previous iteration, representing this information as terms of the form
cluster(object ID, cluster number). At iteration zero, the assignment
object-cluster is random.

closest(Iter, Obj, Cluster) :- best_dist(Iter, Obj, k, Cluster, D).
best_dist(Iter, Obj, 1, 1, D) :- distance(centre(Iter, 1), Obj, D).
best_dist(Iter, Obj, K, Cluster, D) :- K>1,
distance(centre(Iter, K), 0bj, D1),
best_dist(Iter, Obj, K-1, Cluster2, D2),
if D1 < D2 then Cluster=K, D=D1
else Cluster=Cluster2, D=D2.

Here the selection of the closest cluster centre is implemented, simply
scanning all the k centres obtained for the previous iteration, searching for
the minimum value of the distance w.r.t. the object to assign. Here it appears
the distance predicate, defined later in this section. In the following last set
of rules, the centre of each cluster for any iteration is defined by setting its
coordinates to the average values taken by all objects in the cluster (notice
that a predicate sum_pairs is used to sum the single components of couples:
since it is quite trivial to implement, its definition is omitted).

fix(centre(Iter,K)) atp (X,Y) at T :-
objs_to_cluster(0_list), assign(Iter, A, 0_list),
member (cluster (0bj,K), 4), fix(0bj) atp (., .) at T,
compute_avg_position(4, K, T, X, Y).
compute_avg position(d, K, T, X, Y) :-
findall((X1, Y1),
(member (cluster (0,K) ,A), traj(0) atp (X1, Y1) at T), L),
sum_pairs(L, (Xsum, Ysum)), length(L,N), N>O,
X=Xsum/N, Y=Ysum/N.

A Declarative Framework for Reasoning on Spatio-Temporal Data 25

fix(centre(K)) atp (X,Y) at T :-
fix(centre(max n_iters, K)) atp (X,Y) at T.
assignments(A) :- objs_to_cluster(0_list),
assign(max n_iters, A, 0_list).

Notice that in the definition of compute_avg position the traj predicate
is used to interpolate the position of objects, since the fixes of an object could
be not aligned to the fixes of the others. The final result of the clustering
process is represented by the cluster assignments and the means of the centres
obtained when the maximum number of iterations has been reached — in
particular, such centres will coincide with a local minimum of the clustering
process if the algorithm converges in less than max n_iters iterations.

The distance between objects can be defined in several ways, depending,
e.g., on the meaning given to clusters or the coarseness allowed in the compu-
tation. One example of coarse but simple distance has been implicitly given in
the previous section, where the similarity between two animals were defined
as the percentage of mutually contemporary fixes (see the couple predicate
in Sect. 6.1). In that case, only the explicit information on fixes has been
exploited, not considering the whole trajectory followed by objects. A differ-
ent and more precise solution, then, should take into account the position of
objects for each time instant. Following this idea, a simple general approach
to compute the distance D(01,02) between two objects 0, and o2, whose po-
sitions along time 01 (t) and 04(t) are defined over a time interval T', can be
described by the following expression:

D(01,02) = B(doy02) |
where the first parameter of the schema, d,, o,(¢), is a distance measure be-
tween o1 (t) and 0,(t), and the second one, ¢(f)|r, is a functional computed
over function f and domain T and returns a real value. In the STACLP rules
given below, d() is instantiated as the Euclidean distance on R?, and &() is
the average functional, thus modelling D(o;,02) as the average Euclidean dis-
tance between 0; and o.. However, such parameters are modular components
of the clustering algorithm, and therefore can be easily instantiated with other
functions, as those described in [19] (e.g., other Minkowski’s metrics for d(),
and min or maz functionals for &()), thus defining new distance notions for
D (01, 02).

Computing the average Euclidean distance between moving objects re-
quires to calculate an integral of the Euclidean distance formula over a given
time interval [tstart, fend]- Thanks to the linear interpolation model adopted,
such computation can be realised in linear time w.r.t. the number of fixes of
each object [19]. This is due to the fact that the integration interval can be bro-
ken down to subintervals and in each of them the integral can be symbolically
solved and thus computed in constant time. The following rules essentially find
such subintervals, use a predicate compute_sub (not described here, as well

26 Mirco Nanni, Alessandra Raffaetd, Chiara Renso, Franco Turini

as sort_without duplicates, for sake of brevity) to compute local integrals,
and aggregate them.

distance(01,02,D) :- collect_fixes(01,02,Fixes),
integral(01,02,Fixes,Int), D=I/(t_end-t_start).
collect _fixes(01,02,Fixes) :-
findall(T, fix(01) atp (_,.) at T, L1),
findall(T, fix(02) atp (_,.) at T, L2),
append(L1,L2,L).
sort_without_duplicates(L, Fixes).
integral(01,02,[.],0).
integral(01,02, [T1]| [T2|T]1], Imnt) :-
traj(01) atp (X11,Y11) at T1, traj(01) atp (X12,Y12) at T2,
traj(02) atp (X21,Y21) at T1, traj(02) atp (X22,Y22) at T2,
compute (X11, Y11, X12, Y12, X21, Y21, X22, Y22, T1, T2, Intl),
integral(01,02,[T2|T], Int2), Int = Intl + Int2.

7.2 Knowledge Discovery on Trajectories

Some of the problems listed in Sect. 5 are difficult to solve with the only
mean of deduction tools, while others could benefit from other capabilities,
such as induction, to yield a more satisfactory solution. In this section we
provide two examples where using the induction tool introduced above helps
to find a simple and compact solution to two of the above mentioned problems:
detecting the relations between animals and the relations between localisations
and events.

In the first case, a fully deductive approach has already been presented in
Sect. 6.1, where a simple criterion was adopted, based on contemporary fixes,
to discover animal couples. A more precise and general solution to the problem
can be achieved by noticing that animal couples and animal herds are groups
of animal which, in general, move together. This can be straightforwardly
rephrased saying that animal herds are clusters of animal individuals whose
mutual distance is, on average, small. This leads to the following STACLP
formalisation, where trajectories of animals are clustered using the k-means
algorithm, and focusing on a time interval [tstort, tend]:

objs_to_cluster(0_list) :-
findall(X, (fix(X) atp (_,.) at _, X=cut_obj(.)), 0_list).

fix(cut_obj(X)) atp (X,Y) at t_start :-

traj(obj (X)) atp (X,Y) at t_start.
fix(cut_obj(X)) atp (X,Y) at tend :-

traj(obj (X)) atp (X,Y) at t_end.
fix(cut_obj(X)) atp (X,Y) at T :- T > t_start, T<t_end,

fix(obj(X)) atp (X,Y) at T.

cluster(X,0_list) :-
findall(Obj, (assignments(A), member(cluster(0bj,XK), 4)), 0_list).

A Declarative Framework for Reasoning on Spatio-Temporal Data 27

couples ([0bj1l, 0Obj2]) :- cluster(_, [Obj1, Obj2]),
sex(0Objl, S1), sex(Obj2, S2), S1 != S82.
herds(0_list) :- cluster(_, O_list), length(0_list, N),
N>=min_herd_size.

The first rule redefines the objs_to_cluster predicate in order to cluster
the new cut_obj (X) objects, obtained by clipping the trajectories of the orig-
inal obj (X) objects on the [tszqrt, tend] time interval (see the above definitions
for fix(cut_obj(X))). In the rules defining couples and herds, we assumed
(i) to be interested in couples of different sex, and that (ii) a necessary (and
sufficient) condition for a group of animals to be an herd is that its size is not
smaller that a given threshold. Of course, it is easy to insert more complex
conditions on the properties of the group and of the animals it contains (e.g.,
checking the respect of given proportions in the number of male and female
individuals).

The problem of studying the relations between localisations and events
requires to discover the effects produced on the behaviour of animals by an
event. A natural way to face the problem is to compare the behaviour of the
animals before the event with their behaviour after the event. As mentioned
in Sect. 5, several approaches can be followed, analysing either the behaviour
of single individuals, or the behaviour of herds. The individual-based class of
solutions simply requires to specify a suitable notion of “behaviour”, in order
to be able to quantify behaviour changes. In what follows, we provide two
examples of solutions falling in the (more complex) herd-based class, which
exploits both the deductive engine of STACLP and the clustering tool defined
at the beginning of this section.

A first formalisation of the event-effects problem can be given in terms of
herd dispersion/compactness, saying that a herd reacts to the event if and
only if its dispersion, measured as the sum of distances between individuals
(or, equivalently, as the average of distances), grows beyond a given threshold
factor max_disperse or shrinks beyond a factor max_compact. This can be
implemented as a STACLP program performing a clustering of the animals
before the event and checking growth and shrink factor after the event.

As a first step, for each object objs(X) two new objects are created:
before(X) and after(X), obtained by cutting the trajectory of obj(X) re-
spectively on the time intervals [tstart, fevent] 0d [tevent, tend), Where teyent 18
the instant when the event begins. This operation can be obtained by means
of STACLP rules similar to those provided in the previous example for the
cut_obj (X) objects.

Next, a clustering on the before(X) objects has to be performed, which
can be achieved, as in the previous example, by simply rewriting the definition
of the objs_to_cluster predicate in the following way:

objs_to_cluster(0_list) :-
findall(X, (fix(X) atp (_,.) at _, X=before(.)), 0.list).

28 Mirco Nanni, Alessandra Raffaetd, Chiara Renso, Franco Turini

Finally, for each cluster the cluster dispersion — i.e., the sum of distances
between the objects in the cluster — is computed before and after the event,
tagging each cluster as “dispersed” or “compacted” if the dispersion respec-
tively grows or shrinks beyond the thresholds max_disperse and max_compact.

cluster_size(K, Before, After):- cluster(K,0_list),
findall((D_before, D_after),
(member(before(X1), 0_list),
member (before (X2), 0_list),
X1 '= X2,
distance(before(X1), before(X2), D_before),
distance(after(X1), after(X2), D_after),
Dlist),
sum_pairs(D_list, (Before, After)).
dispersed_cluster(K) :- cluster_size(K, Before, After),
After > Before * max_disperse.
compacted_cluster(X) :- cluster_size(K, Before, After),
Before > After * max_compact.

Another aspect of interest for the analyst is the existence of animals that,
in reaction to an event, leave the herd. This can be seen as an alternative
measure of dispersion of the herd, based on the behaviour of single animals
w.r.t. the herd they belong to instead of considering only the overall behaviour
of the heard.

Animals which abandon their herd can be defined as individuals that before
the event belong to a given cluster, but, after the event, they move closer to
other clusters. We therefore need to cluster animals w.r.t. their trajectory
before the event, and then check if the cluster assignments are still valid also
after event. The first step has already been performed in the previous example.
To implement the second one, we compute first the centre of each cluster after
the event (essentially with the same rule used to define the clustering engine),
then for each object we find the closest centre to verify if it corresponds to
the cluster the object belongs to:

fix(centre(after_event,K)) atp (X,Y) at T :-
cluster(K, 0_list), rename objs(K, 0_list, A_list),
member (O0bj, 0_list), fix(Obj) atp (_,.) at T,
compute_avg position(A_list, K, T, X, Y).
rename_objs(X, [1, [1).
rename_objs(K, [before(X) | Objs], [A1|As]) :- Al=cluster(after(X),K),
rename_objs(K, Objs, As).
run_away(obj(X)) :- cluster(K_before, 0_list),
member (before(X), 0_list),
closest(after_event, after(X), K._after),
K_after != K_before.

The centre of each cluster k is named centre(after event, k), in order
to obtain object names syntactically compatible with the rules which de-

A Declarative Framework for Reasoning on Spatio-Temporal Data 29

fine the clustering engine, and in particular those which define the closest,
used to define the run_away predicate shown above. Finally, the rename _objs
predicate has the simple purpose of converting the cluster assignment of
each before(X) object into the equivalent assignment for the corresponding
after (X) object (i.e., the second half of each trajectory is labelled according
to the clustering obtained on the first half).

8 Conclusions

The framework we presented provides the user with high level mechanisms to
represent and reason on spatio-temporal data. The peculiarity of this approach
is that it exhibits both deductive and inductive capabilities, thus offering the
possibility to make analysis driven by domain expert rules (deduction) and
driven by observations (induction). Moreover we showed how STACLP can be
successfully applied to a concrete case study concerning behavioural ecology.

Currently we are improving the implementation of STACLP, which is at a
prototype stage, and we intend to study how to introduce other knowledge dis-
covery techniques, such as clagsification and frequent patterns. When dealing
with either spatial objects, or temporal objects, or spatio-temporal objects in
order to apply the above data mining techniques, the most crucial and difficult
problem is to find a clear definition of the basic concept of item, which is the
elementary unit of data to analyse, and the derived concept of transaction,
which is a collection of items. So far, it seems to us that the problem is quite
depending on the kind of application at hand, but one of our future research
goals is to establish definitions abstract enough for these concepts in order to
capture most of the possible applications.

Another promising direction we addressed concerns qualitative spatial rea-
soning. Some preliminary results are presented in [22] and we would like to
analyse forms of qualitative reasoning on trajectories.

Acknowledgements: We thank T. Ceccarelli and A. Massolo for providing
us the case study and F. Fornasari and B. Furletti who collaborated in the
implementation of the system. This work has been partially supported by
European Project IST-1999-14189 - Revlgis.

References

1. A.L. Abdelmoty, N.W. Paton, M.H. Williams, A.A.A. Fernandes, M.L. Barja,
and A. Dinn. Geographic Data Handling in a Deductive Object-Oriented Da-
tabase. In DEXA Conf., volume 856 of LNCS, pages 445-454. Springer, 1994.

2. T. Abraham. Knowledge Discovery in Spatio- Temporal Databases. PhD thesis,
School of Computer and Information Science, Faculty of Information Technol-
ogy, University of South Australia, 1999.

3. T. Abraham and J.F. Roddick. Survey of Spatio-Temporal Databases. Geoln-
formatica, 3(1):61-99, 1999.

30

@

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Mirco Nanni, Alessandra Raffaetd, Chiara Renso, Franco Turini

. T. Ceccarelli, D. Centeno, F. Giannotti, A. Massolo, C. Parent, A. Raffaeta,
C. Renso, S. Spaccapietra, and F. Turini. The behaviour of the Crested Porcu-
pine: the complete case study. Technical report, DeduGIS - EU WG, 2001.

. J. Chomicki, Y. Liu, and P.Z. Revesz. Animating Spatiotemporal Constraint

Databases. In Spatio- Temporal Database Management, volume 1678 of LNCS,

pages 224-241. Springer, 1999.

J. Chomicki and P.Z. Revesz. Constraint-Based Interoperability of Spatiotem-

poral Databases. Geolnformatica, 3(3):211-243, 1999.

M. Erwig, R. H. Giiting, M. Schneider, and M. Vazirgiannis. Spatio-Temporal

Data Types: An Approach to Modeling and Querying Moving Objects in

Databases. GeolInformatica, 3(3):269-296, 1999.

ESRI. Spatial Analyst. http://www.esri.com.

C. Faloutsos and K.-I. Lin. Fastmap: a fast algorithm for indexing of traditional

and multimedia databases. In SIGMOD Conf., pages 163-174. ACM, 1995.

T. Frithwirth. Temporal Annotated Constraint Logic Programming. Journal of

Symbolic Computation, 22:555-583, 1996.

S. Gaffney and P. Smyth. Trajectory clustering with mixture of regression

models. In KDD Conf., pages 63-72. ACM, 1999.

S. Grumbach, P. Rigaux, and L. Segoufin. The DEDALE System for Complex

Spatial Queries. In SIGMOD Conf., pages 213-224. ACM, 1998.

S. Grumbach, P. Rigaux, and L. Segoufin. Spatio-Temporal Data Handling with

Counstraints. GeolInformatica, 5(1):95-115, 2001.

R.M. Giiting, M.H. Bohlen, M. Erwig, C.S. Jensen, N. Lorentzos, M. Schneider,

and M. Vagzirgiannis. A Foundation for Representing and Querying Moving

Objects. TODS, 25(1):1-42, 2000.

P. N. Hooge, W. M. Eichenlaub, and E. K. Solomon. Animal Movement Ex-

tension to ArcView. Ver. 2.0., 1997. Alaska Biological Science Center, U.S.

Geological Survey, Anchorage, AK, USA.

P.C. Kanellakis, G.M. Kuper, and P.Z. Revesz. Constraint query languages.

Journal of Computer and System Sciences, 51(1):26-52, 1995.

A. Ketterlin. Clustering sequences of complex objects. In KDD Conf., pages

215-218. ACM, 1997.

P. Mancarella, A. Raffaetd, C. Renso, and F. Turini. Integrating Knowledge

Representation and Reasoning in Geographical Information Systems. Interna-

tional Journal of GIS. To appear.

M. Nanni. Clustering Methods for Spatio-Temporal Data. PhD thesis, Diparti-

mento di Informatica, Universita di Pisa, 2002.

A. Raffaetd and T. Friilhwirth. Spatio-Temporal Annotated Constraint Logic

Programming. In PADL’01, volume 1990 of LNCS, pages 259-273. Springer,

2001.

A. Raffaetd, C. Renso, and F. Turini. Enhancing GISs for Spatio-Temporal

Reasoning. In GIS’02, pages 35—-41. ACM, 2002.

A. Raffaeta, C. Renso, and F. Turini. Qualitative Spatial Reasoning in a Logical

Framework. In AT*IA Conf., volume 2829 of LNAI pages 78-90, 2003.

S. Spaccapietra, editor. Spatio-Temporal Data Models & Languages (DEXA

Workshop). IEEE Computer Society Press, 1999.

M. F. Worboys. A unified model for spatial and temporal information. The

Computer Journal, 37(1):26-34, 1994.

M. F. Worboys. GIS - A Computing Perspective. Taylor & Francis, 1995.

