
Deductive and inductive reasoning on
spatio-temporal data

Mirco Nanni1, Alessandra Raffaetà2, Chiara Renso1, Franco Turini3

1 ISTI CNR - Pisa
{nanni, renso}@isti.cnr.it

2 Dipartimento di Informatica - Università Ca’ Foscari Venezia
raffaeta@dsi.unive.it

3 Dipartimento di Informatica - Università di Pisa
turini@di.unipi.it

Abstract. We present a framework for a declarative approach to spatio-
temporal reasoning on geographical data, based on the constraint logical
language STACLP, which offers deductive and inductive capabilities. It
can be exploited for a deductive rule-based approach to represent domain
knowledge on data. Furthermore it is well suited to model trajectories
of moving objects, which can be analysed by using inductive techniques,
like clustering, in order to find common movement patterns. A sketch of
a case study on behavioral ecology is presented.

1 Introduction

New technologies in the field of mobile computing and communication can pro-
vide a wealth of spatio-temporal information. Collected data are useful as far as
they can be used to analyse phenomena and to take informed decisions. Induc-
tive methods can be exploited for data anlysis since they are capable to extract
implicit knowledge from raw observations. However, extracted patterns are very
seldom geographic knowledge pr?t-a-porter: it is necessary to reason on patterns
and on pertinent background knowledge, evaluate patterns interestingness, refer
them to geographic information.

The first step for allowing one to make a profitable use of data and extracted
patterns is to provide a query language for them, and we believe that the query
language, even more in the case of spatio-temporal data, must be able to handle
not only data but also rules, and exhibit both deductive and inductive capabili-
ties. Rules can be used to represent general knowledge about the collected data,
and deductive capabilities can provide answers to queries that require some infer-
ence besides the crude manipulation of the data. Induction can help extracting
implicit knowledge from data and, according to the impressive success in the
knowledge discovery in database field, is a powerful support to decision making.
The approach we propose here is a first step to build a framework where a repre-
sentational and a query language for spatio-temporal data mining are conciliated
providing a uniform language that merges raw data representation, methods for



patterns extraction and reasoning formalisms over background knowledge, the
integration of possibly other related georeferenced data and extracted patterns.

In order to support both deductive and inductive reasoning on spatio-temporal
data we propose the formalism STACLP (Spatio-Temporal Annotated Con-
straint Logic Programming) [40] based on constraint logic programming, ex-
tended with annotations. Constraint logic programming provides the deductive
capabilities, and annotations allow a neat representation of temporal, spatial
and spatio-temporal knowledge. On this ground we can construct the inductive
capabilities of the language by implementing knowledge extraction methods.

Our proposal fits in a new and promising research field, that is the integration
of declarative paradigms and systems for dealing with spatial and/or temporal
information, such as spatial databases and Geographical Information Systems
(GISs). In the literature we can find other attempts to exploit the deductive
capabilities of logics to reason on geographic data [55, 49, 1, 19].

Information induction over spatio-temporal data is far from being a mature
field, yet. In recent years, many algorithms and applications have been investi-
gated in literature, which deal with spatial data (e.g., [12, 22, 37, 30]) or temporal
data (e.g., [50, 18, 27]), either extending ideas coming from relational data min-
ing or introducing new concepts of patterns and new computational approaches.
On the contrary, only a limited number of proposals are actually available on
mining methods which exploit both the spatial and the temporal components of
data. In Section 2 a brief review is provided.

Section 3 introduces the language STACLP and Section 4 focuses on the
representation of one of the most fundamental spatio-temporal objects, i.e. the
trajectory. In Section 5 we sketch how STACLP allows us to solve a case study
concerning behavioural ecology by using the deductive capabilities of the lan-
guage, and the inductive capabilities implementing a clustering method. Finally,
Section 6 draws some conclusions and outlines future research directions.

2 Related Work

While a lot of effort has been spent in developing extensions of logic programming
languages capable to manage time [38], the logic based languages for the handling
of spatial information only deal with the qualitative representation and reasoning
about space (see e.g. [43]). And also the few attempts to manipulate time and
space have led to languages for qualitative spatio-temporal representation and
reasoning [54]. On the other hand temporal [52, 13] and spatial [21, 39] database
technologies are relatively mature, although, also in the database area, their
combination is far from straightforward [6].

Our spatio-temporal language is close to the approaches based on constraint
databases [5, 8, 19]. ¿From a database point of view, logic programs can repre-
sent deductive databases, i.e. relational databases enriched with intensional rules,
constraint logic programs can represent constraint databases [26], and thus STA-
CLP can represent spatio-temporal constraint databases. The spatio-temporal
proposals in [5, 19] are extensions of languages originally developed to express



only spatial data. Thus the high-level mechanisms they offer are more oriented
to query spatial data than temporal information. In fact, they can model only
definite temporal information and there is no support for periodic, indefinite
temporal data. On the contrary STACLP provides several facilities to reason
on temporal data and to establish spatio-temporal correlations. For instance, it
allows one to describe continuous change in time as well as [8] does, whereas
both [5] and [19] can represent only discrete changes. Also indefinite spatial and
temporal information can be expressed in STACLP, a feature supported only by
the approach in [32].

Spatio-temporal data mining is a subfield of data mining and knowledge
discovery, aimed at the extraction of spatial and temporal patterns and rela-
tionships not explicitly contained in the database. Introducing a spatial and/or
temporal component to data has two main effects: on one hand, the complexity
of the data mining task is highly increased, requiring to adopt suitable measures
to contain the computation time; on the other hand, space and time are not
simple attributes, since they have a specific semantics, and then new, ad hoc
analysis tools should be developed to take full advantage of such information.

In the last ten years, several mining algorithms for temporal data have been
presented in literature. Among the mainstream research subfields, we mention
the mining of frequent patterns in transactional, timestamped databases such
as sequential patterns [3, 50] and episodes [34], and the large area of time series
mining: time series classification [18, 9, 10], sequential association rules [11, 23,
25], clustering [16, 20, 27] and anomaly detection [56].

Several approaches have also been proposed for mining spatial data (see [35],
[48], [46] for reviews of recent results): spatial trend detection [12], clustering
[22, 44, 4, 24, 57], outlier detection [37, 47], association/co-location rules [30, 45]
and classification [29, 12, 31].

In the context of spatio-temporal data minig, where the spatial and tempo-
ral component are expected to be used together, [2] suggests two main kinds
of information to induce: meta-rules, i.e., regularities shown along time by the
rules obtained in each snapshot, and evolution rules, i.e., rules computed over
pre-computed spatio-temporal features of entities. So far, only a limited number
of concrete proposals are available for the mining of spatio-temporal data, such
as sequential patterns [53], movement prediction [51] and clustering [36, 28, 17,
14]. In this work, in particular, a clustering algorithm for trajectories is designed
within the STACLP system, following the solution described in [36]. However
a few alternative approaches can be found in literature: [28] considers generic
sequences together with a conceptual hierarchy over the sequence elements, used
to compute both the cluster representatives and the distance between two se-
quences. In [17], a model-based clustering method for continuous trajectories is
proposed, which puts together objects which can be obtained from a common
core trajectory by adding noise with normal distribution. Finally, [14] proposes a
general mapping from any data space to an Euclidean space, where any standard
clustering algorithm can be applied.



3 STACLP: a Spatio-Temporal Language

In this section we present the language STACLP [40], which extends Temporal
Annotated Constraint Logic Programming [15], a constraint logic programming
language with temporal annotations, by adding spatial annotations. The pieces
of spatio-temporal information are given by pairs of annotations which specify
the spatial extent of an object at a certain time period. The use of annotations
makes time and space explicit but avoids the proliferation of spatial and tempo-
ral variables and quantifiers. Moreover, it supports both definite and indefinite
spatial and temporal information, and it allows one to establish a dependency
between space and time, thus permitting to model continuously moving points
and regions.

Let us start by describing the temporal and spatial domain underlying STA-
CLP. Time can be discrete or dense. Time points are totally ordered by the
relation ≤. We denote by T the set of time points and we suppose to have a
set of operations (e.g., the binary operations +, −) to manage such points. The
time-line is left-bounded by 0 and open to the future, with the symbol ∞ used
to denote a time point that is later than any other. A time period is an interval
[r, s] with r, s ∈ T and 0 ≤ r ≤ s ≤ ∞, which represents the convex, non-empty
set of time points {t | r ≤ t ≤ s}. Thus the interval [0,∞] denotes the whole
time line.

Analogously space can be discrete or dense and we consider as spatial regions
rectangles represented as [(x1, x2), (y1, y2)], where (x1, y1) and (x2, y2) denote the
lower-left and upper-right vertex of the rectangle. Precisely, [(x1, x2), (y1, y2)]
models the region {(x, y) | x1 ≤ x ≤ x2, y1 ≤ y ≤ y2}. Rectangles are the
two-dimensional counterpart of convex sets of time points.

Annotated formulae are of the form Aα where A is an atomic formula and
α an annotation. We define three kinds of temporal and spatial annotations
inspired by similar principles:

atT and atp (X,Y ) are used to express that a formula holds in a time or spatial
point, respectively.

th I, thrR are used to express that a formula holds throughout, i.e., at every
point, in the temporal interval or the spatial region, respectively.

in I, inrR are used to express that a formula holds at some point(s) - but
we may not know exactly which - in the interval or the region, respectively.
They account for indefinite information.

The set of annotations is endowed with a partial order relation v. Given two
annotations α and β, the intuition is that α v β if α is “less informative” than
β in the sense that for all formulae A, Aβ ⇒ Aα. This partial order is used
in the definition of new inference rules. In addition to Modus Ponens, STACLP
has the two inference rules below:

Aα γ v α
A γ rule (v) Aα Aβ γ = α t β

Aγ rule (t)

The rule (v) states that if a formula holds with some annotation, then it also
holds with all annotations that are smaller according to the partial ordering.



The rule (t) says that if a formula holds with some annotation α and the same
formula holds with another annotation β then it holds with the least upper
bound α t β of the two annotations.

Next, we introduce the constraint theory for temporal and spatial annotations.
A constraint theory is a non-empty, consistent first order theory that axiomatises
the meaning of the constraints. Besides an axiomatisation of the total order
relation ≤ on the set of points, the constraint theory includes the axioms in
Table 1 defining the partial order on temporal and spatial annotations. The first
two axioms state that th I and in I are equivalent to at t when the time period I
consists of a single time point t. Next, if a formula holds at every point of a time
period, then it holds at every point in all sub-periods of that period ((th v)
axiom). On the other hand, if a formula holds at some points of a time period
then it holds at some points in all periods that include this period ((in v)
axiom). The axioms for spatial annotations are analogously defined.

(at th) at t = th [t, t]
(at in) at t = in [t, t]
(th v) th [s1, s2] v th [r1, r2]⇔ r1 ≤ s1, s2 ≤ r2

(in v) in [r1, r2] v in [s1, s2]⇔ r1 ≤ s1, s2 ≤ r2

(atp thr) atp (x, y) = thr [(x, x), (y, y)]
(atp inr) atp (x, y) = inr [(x, x), (y, y)]
(thr v) thr [(x1, x2), (y1, y2)] v thr [(x′1, x

′
2), (y′1, y

′
2)]⇔

x′1 ≤ x1, x2 ≤ x′2, y′1 ≤ y1, y2 ≤ y′2
(inr v) inr [(x′1, x

′
2), (y′1, y

′
2)] v inr [(x1, x2), (y1, y2)]⇔

x′1 ≤ x1, x2 ≤ x′2, y′1 ≤ y1, y2 ≤ y′2

Table 1. Axioms for the partial order on annotations.

3.1 Combining Spatial and Temporal Annotations

In order to obtain spatio-temporal annotations the spatial and temporal an-
notations are combined by considering pairs of annotations as a new class of
annotations. Let us first introduce the general idea of pairing of annotations.

Definition 1. Let (A,vA) and (B,vB) be two disjoint classes of annotations
with their partial order. Their pairing is the class of annotations (A ∗B,vA∗B)
defined as A ∗B = {αβ, βα | α ∈ A, β ∈ B} and γ1 vA∗B γ2 whenever

((γ1 = α1β1∧γ2 = α2β2)∨ (γ1 = β1α1∧γ2 = β2α2)) ∧ (α1 vA α2 ∧ β1 vB β2)

In our case the spatio-temporal annotations are obtained by considering the
pairing of spatial and temporal annotations.

Definition 2 (Spatio-temporal annotations). The class of spatio-temporal
annotations is the pairing of the spatial annotations Spat built from atp, thr

and inr and of the temporal annotations Temp, built from at, th and in, i.e.
Spat∗Temp.



Now we can introduce the clausal fragment of STACLP, which can be used
as an efficient spatio-temporal programming language. It consists of clauses of
the following form:

Aαβ ← C1, . . . , Cn, B1 α1β1, . . . , Bm αmβm (n,m ≥ 0)

where A is an atom, α, αi, β, βi are (optional) temporal and spatial annotations,
the Cj ’s are constraints and the Bi’s are atomic formulae. Constraints Cj cannot
be annotated. A STACLP program is a finite set of STACLP clauses.

Example 1. Assume that a person is described by his/her name, the activity and
the spatial position(s) in a certain time interval. For instance, from 1am to 10am
John sleeps, then he goes skiing up to 4pm, while Monica skies from noon to
4pm. This can be expressed by means of the following clauses.

does(john,sleep) atp (200,700) th [1am,10am].

does(john,ski) inr [(500,2000),(1000,2000)] th [10am,4pm].

does(monica,ski) inr [(500,800),(800,2000)] th [12am,4pm].

place(ski shop) thr [(700,900),(1200,1400)].

Notice that the spatial location is expressed by using an atp annotation when
the exact position is known, and by an inr annotation if we can only delimit
the area where the person can be found. Furthermore, a place can be described
by its name and its area represented by a thr annotation.

An example of query is Where is John while Monica is at the ski shop?,
encoded in the following way: does(john, ) inr R th I, does(monica, ) inr R1 th I,

place(ski shop) thr R1. This query is a composition of a spatial join and a tem-
poral join.

4 Representing Trajectories

One of the basic forms of spatio-temporal information is given by spatio-temporal
objects, namely objects which move along time within a spatial environment.

From an abstract point of view, the movement of a spatio-temporal object
o – i.e., its trajectory – can be represented by a continuous function of time
which, given a time instant t, returns the position at time t of the object in a
d-dimensional space (typically d ∈ {2, 3}). Formally o : R+ → Rd.

In a real-world application, however, object movements are given by means
of a finite set of observations – or control points –, i.e. a finite subset of points
taken from the actual continuous trajectory. Moreover, it is reasonable to expect
that observations are taken at irregular rates within each object, and that there
is not any temporal alignment between the observations of different objects. As
a result, it is possible to have couples of objects for which at all time points
the observation of at least one of the objects is missing. A very basic operation
such as the comparison between objects, then, cannot be performed by simply
comparing their raw observations. To allow the comparison between objects,



an (approximate) reconstruction of their full trajectory is needed. Among the
several possible solutions, we will focus on Local interpolation.

According to the local interpolation method, although there is not a global
function describing the whole trajectory, objects are assumed to move between
the observed points following some rule. For instance, a linear interpolation
function models a straight movement with constant speed, while other polyno-
mial interpolations can represent smooth changes of direction. The above men-
tioned linear (local) interpolation, in particular, seems to be a quite standard
approach to the problem (see, e.g., Chomicki and Revesz’s parametric 2-spaghetti
model [8]).

Now, let us show how trajectories can be modelled in STACLP. Given an
object o, the observations which describe its trajectory is a finite set of triplets
(x, y, t), where x and y are the coordinates of the object tracked at time t. The
trajectory reconstruction through linear interpolation can be easily represented
by equations of the following form, which define the (x, y) coordinates of an
object at time t ∈ [t1, t2]:

(x− x1)(t2 − t1) − (x2 − x1)(t− t1) = 0, and
(y − y1)(t2 − t1) − (y2 − y1)(t− t1) = 0

where (x1, y1, t1) and (x2, y2, t2) are two consecutive location points (i.e., there
are not other locations in the time interval [t1, t2]).

Specifically, the N locations of each object o, (xi, yi, ti) for i = 1, . . . , N , can
be represented by the following N STACLP facts:

fix(o) atp (x1, y1) at t1. . . . fix(o) atp (xN, yN) at tN.

Such locations will define the core of the trajectory of object o, which is then
completed by defining all the intermediate points through linear interpolation
using the following STACLP rules:

traj(O) atp (X, Y) at T :- fix(O) atp (X, Y) at T.

traj(O) atp (X, Y) at T :- fix(O) atp (X1, Y1) at T1,

fix(O) atp (X2, Y2) at T2,

succ(T1,T2), T1 < T < T2,

X=(X1(T2-T)+X2(T-T1))/(T2-T1),

Y=(Y1(T2-T)+Y2(T-T1))/(T2-T1).

In the body of the second rule, approximated points (x, y) are computed by
using the equation for the line passing through two given points, shown above.
The presence of the (standard) successor predicate succ, defined as true for
all and only the couples of (strictly) consecutive location points, ensures that
no other observation exists between times t1 and t2, i.e., the interpolation is
performed only between consecutive location points.

5 Spatio-Temporal Analysis in STACLP

In this section we sketch a case study about behavioural ecology, the science
which studies animal behaviour with special interest in the relation to the envi-
ronment where animal lives. This is definitely an interesting application domain



for our framework since the problems coped with require the analysis of large
spatio-temporal datasets.

Typically, biologists collect information tracking the movement of animals
by means of special radio-collars thus building large datasets containing spatio-
temporal locations, called fixes. Each fix includes the identifier of the animal,
the position expressed by the spatial coordinates X, Y and the time T of the
location. The set of fixes allows us to view animals as spatio-temporal objects.

To experiment the usefulness of our framework for spatio-temporal analysis,
we coped with some relevant problems in the behavioural ecology of the crested
porcupine [7], such as determining the estimated position of the den whenever
its real location is unknown, detecting how the life area of the animal, called
home range, changes along the time or discovering the relationships existing
among individuals. Here we will describe only the last problem. It includes a
wide range of cases such as finding pairs of individuals of different sex that move
together and possibly share the same den (couples), or groups of individuals
that move together (herds) or couple/groups of individuals that avoid each other
(territoriality).

In facing such issues, we can highlight the benefits of STACLP. First of all,
the language allows for a high level representation and manipulation of time as
well as space thus providing primitive support for reasoning on spatio-temporal
data. Secondly, it allows us to mix inductive and deductive steps to perform
complex kinds of analysis on the behaviour of crested porcupines.

Section 5.1 below focuses on deduction showing how the deductive capability
of our language allows us to discover the animals which are likely to be a couple.
Section 5.2, instead, is devoted to introduce mechanisms to support inductive
analysis, describing how these tools can be successfully used in our case study.

5.1 Deductive Analysis in STACLP

To model the spatio-temporal locations of each crested porcupine we define a
collection of facts of the kind:

fix(id) atp (x,y) at t.

specifying the position x,y, and the time t (expressed in seconds) of a location
for the animal id.

Below we will show the STACLP code that implements the expert criteria
by which we successfully solve the question of interest. The rules are slightly
simplified by removing some implementation details to focus on the knowledge
representation ability of the language. Furthermore the code can be made exe-
cutable by a simple precompilation step. The rules extensively use the Prolog
meta-predicate findall(X,G,L) which computes the list L of elements X that
satisfy the goal G.

We focus here on the specific problem of finding possible couples, that is
animals of different sex that move together. In order to find out the probable
couples we exploit the notion of contemporary fixes: two fixes are contemporary



if they refer to locations of animals in the same place and at the same time, i.e.,
we consider a kind of spatio-temporal closeness among individuals. Since the
tracking technique usually presents several sources of error, in the analysis two
fixes are assumed to be contemporary if they fall within a given time interval and
the corresponding positions are within a certain distance. The effective values
for the temporal and spatial thresholds are established by the domain experts.

Analysing the inter-individual distance between animals obtained by com-
puting the number of contemporary fixes for a pair of animals, the expert can
decide whether the pair is a couple or not.

couple in day(Id1,Id2,R,S,N) at T :-

findall(c(Id1,Id2), (fix(Id1) atp(X1,Y1) at T1,

fix(Id2) atp(X2,Y2) at T2,

sex(Id1, S1), sex(Id2, S2), S1 != S2,

contem(X1,Y1,X2,Y2,R,S,T1,T2) at T),

L),

length(L,N).

contem(X1,Y1,X2,Y2,Rad,Sec,T1,T2) at T:- in day(T1,T2) at T,

dist(X1,Y1,X2,Y2,D), D < Rad, abs(T2-T1) < Sec.

couple(Id1,Id2,R,S,Ratio) in [T1,T2] :-

couple in day(Id1,Id2,R,S,N) in [T1,T2],

couple in day(Id1,Id2,1000000,S,M) in [T1,T2],

Ratio is (N/M).

The predicate couple in day returns the number N of contemporary fixes
in a day for the pair of crested porcupines Id1,Id2. Two fixes are considered
contemporary if their spatial and temporal distance is bounded by R and S

respectively, as encoded by the predicate contem. The atom in day(T1,T2)

at T checks whether either T1 or T2 is within the day T. Finally, the predicate
couple returns the ratio between the number of contemporary fixes of the crested
porcupines Id1,Id2 and the number of observations of Id1,Id2 within S seconds
at arbitrary distance (concretely this is obtained by setting a very large bound
for the distance parameter) in a certain time period.

Finally, we show the STACLP code to compute a representation of animal
home ranges which can enable an effective detection of their changes, following
the ideas presented in Sect. ??.

We recall that we want to compute the home range of an animal within a
given time interval [t start,t end] in a “continuous” way. Concretely, home
ranges are computed on overlapping time intervals, each of duration Wt and each
shifted of δt w.r.t. the previous one. We assume that Wt <= t end - t start,
i.e., at least one of such intervals can fit in [t start,t end].

homerange(Fix list, Home) :- <ad hoc query/external call>

home(Id, Home) at t start:- findall((T,X,Y),

(fix(Id) atp (X,Y) at T, T>= t start, T<t start+Wt), Fix list),

homerange(Fix list, Home).

home(Id, Home) at T:- home(Id, ) at T prev,



T=T prev+δt, T + Wt <= t end,

findall((T fix,X,Y),

(fix(Id) atp (X,Y) at T fix, T fix >= T, T fix < T+Wt),

Fix list),

homerange(Fix list, Home).

Given a list of fixes, the predicate homerange returns the corresponding home
range Home by simply calling a routine provided by an external application. More
details on the use of built-in predicates to directly invoke external functions can
be found in [33, 41].

The predicate home returns the home range Home for an animal Id at reg-
ular time points, i.e. at t start and at time points shifted from t start of a
multiple of δt. The first rule states that the home range for animal Id at the
time instant t start is obtained by finding all the fixes included in the inter-
val [t start, t start+Wt] and then applying the home range routine to these
fixes. The second rule manages the remaining time points and is defined in a
similar way: it computes the home range using the fixes within the interval [T,
T+Wt], provided that T is shifted from t start by a multiple of δt and T+Wt <=

t end.

5.2 Inductive Analysis in STACLP

As shown in the previous subsection, deductive reasoning can be useful to solve
analysis problems which essentially require to find entities and values having
some, possibly complex, properties.

However, dealing with sophisticated analysis tasks, it is quite common to
meet concepts and abstract entities whose definition through deductive rules
can be extremely difficult. In many cases, a suitable solution to the problem at
hand requires the extrapolation of new pieces of information from those already
available. In other words, knowledge induction capabilities can be needed to
properly tackle some difficult problems.

For this reason, the STACLP language can be fruitfully extended with in-
duction capabilities, such as data mining algorithms. In this section we show
(i) how a basic data mining tool, the k-means clustering algorithm, specifically
tailored around trajectories, can be defined as STACLP rules, and (ii) how it can
be used to provide an alternative solution to the problem of discovering couples
and herds.

Clustering The clustering task is aimed at identifying clusters embedded in
the data, i.e. to partition (although not necessarily in a crisp way) the dataset
into collections of data objects, such that within each partition the objects are
“similar” to one another, while they are “different” from the objects contained
in other partitions.

Among the classical clustering algorithms, K-means is one of the best known
and widely used, for its simplicity and its low computational complexity. It is
a centre-based algorithm, meaning that clusters are represented by means of



artificial objects (the centres or representatives) which summarise the properties
of all the objects in their cluster. The k-means algorithm is essentially an iterative
convergence process which tries to find “stable” centres: it starts with k random
centres, and then, at each iteration (i) each object is associated with the closest
centre, and (ii) new centres are computed. The algorithm ends when the centres
are stable, i.e. they do not change any more from an iteration to the next one.

The general k-means clustering schema can be instantiated to a specific k-
means algorithm by specifying the two key operations used in the schema: (i)
computing the distance between two objects, and (ii) computing the represen-
tative of a set of objects (i.e., the centre of a cluster). Different definitions for
these two steps can yield completely different notions of clustering.

The STACLP language allows to implement a k-means algorithm in a very
compact, well structured and readable form. In what follows, we show the most
high level rules of such implementation. For ease of presentation, we assume that
k is the (fixed) number of clusters to find, and all objects to be clustered have
an Id of the form “objs(name of object)”.

objs to cluster(O list) :-

findall(X, (fix(X) atp ( , ) at , X=objs( )), O list).

assign(It, [], []).

assign(0, [A1|A],[Obj1|Objs]) :- K=random(k),

A1=cluster(Obj1,K), assign(0, A, Objs).

assign(It, [A1|A],[Obj1|Objs]) :- It>0, closest(It-1, Obj1, Cluster),

A1=cluster(Obj1,Cluster), assign(It, A, Objs).

The objs to cluster predicate defines the set of objects to be clustered.
In the example instantiation given above, all objs( ) objects having some fixes
defined were selected. For any iteration It, the assign predicate associates ev-
ery object with its closest cluster centre, based on the results recursively ob-
tained at the previous iteration, representing this information as terms of the
form cluster(object ID, cluster number). At iteration zero, the assignment
object-cluster is random.

closest(Iter, Obj, Cluster) :- best dist(Iter, Obj, k, Cluster, D).

best dist(Iter, Obj, 1, 1, D) :- distance(centre(Iter, 1), Obj, D).

best dist(Iter, Obj, K, Cluster, D) :- K>1,

distance(centre(Iter, K), Obj, D1),

best dist(Iter, Obj, K-1, Cluster2, D2),

if D1 < D2 then Cluster=K, D=D1

else Cluster=Cluster2, D=D2.

Here the selection of the closest cluster centre is implemented, simply scan-
ning all the k centres obtained for the previous iteration, searching for the min-
imum value of the distance w.r.t. the object to assign. Here it appears the
distance predicate, defined later in this section. In the following last set of
rules, the centre of each cluster for any iteration is defined by setting its coor-
dinates to the average values taken by all objects in the cluster (notice that a



predicate sum pairs is used to sum the single components of couples: since it is
quite trivial to implement, its definition is omitted).

fix(centre(Iter,K)) atp (X,Y) at T :-

objs to cluster(O list), assign(Iter, A, O list),

member(cluster(Obj,K), A), fix(Obj) atp ( , ) at T,

compute avg position(A, K, T, X, Y).

compute avg position(A, K, T, X, Y) :-

findall((X1, Y1),

(member(cluster(O,K),A), traj(O) atp (X1, Y1) at T), L),

sum pairs(L, (Xsum, Ysum)), length(L,N), N>0,

X=Xsum/N, Y=Ysum/N.

fix(centre(K)) atp (X,Y) at T :-

fix(centre(max n iters, K)) atp (X,Y) at T.

assignments(A) :- objs to cluster(O list),

assign(max n iters, A, O list).

Notice that in the definition of compute avg position the traj predicate is
used to interpolate the position of objects, since the fixes of an object could be
not aligned to the fixes of the others. The final result of the clustering process
is represented by the cluster assignments and the means of the centres obtained
when the maximum number of iterations has been reached – in particular, such
centres will coincide with a local minimum of the clustering process if the algo-
rithm converges in less than max n iters iterations.

The distance between objects can be defined in several ways, depending,
e.g., on the meaning given to clusters or the coarseness allowed in the compu-
tation. One example of coarse but simple distance has been implicitly given in
the previous section, where the similarity between two animals were defined as
the percentage of mutually contemporary fixes (see the couple predicate in Sec-
tion 5.1). In that case, only the explicit information on fixes has been exploited,
not considering the whole trajectory followed by objects. A different and more
precise solution, then, should take into account the position of objects for each
time instant. Following this idea, a simple general approach to compute the dis-
tance D(o1, o2) between two objects o1 and o2, whose positions along time o1(t)
and o2(t) are defined over a time interval T , can be described by the following
expression:

D(o1, o2) = Φ(do1,o2
)
∣∣
T

where the first parameter of the schema, do1,o2
(t), is a distance measure be-

tween o1(t) and o2(t), and the second one, Φ(f)|T , is a functional computed
over function f and domain T and returns a real value. In the STACLP rules
given below, d() is instantiated as the Euclidean distance on R2, and Φ() is the
average functional, thus modelling D(o1, o2) as the average Euclidean distance
between o1 and o2. However, such parameters are modular components of the
clustering algorithm, and therefore can be easily instantiated with other func-
tions, as those described in [36] (e.g., other Minkowski’s metrics for d(), and min
or max functionals for Φ()), thus defining new distance notions for D(o1, o2).



Computing the average Euclidean distance between moving objects requires
to calculate an integral of the Euclidean distance formula over a given time
interval [tstart, tend]. Thanks to the linear interpolation model adopted, such
computation can be realised in linear time w.r.t. the number of fixes of each
object [36]. This is due to the fact that the integration interval can be bro-
ken down to subintervals and in each of them the integral can be symbolically
solved and thus computed in constant time. The following rules essentially find
such subintervals, use a predicate compute sub (not described here, as well as
sort without duplicates, for sake of brevity) to compute local integrals, and
aggregate them.

distance(O1,O2,D) :- collect fixes(O1,O2,Fixes),

integral(O1,O2,Fixes,Int), D=I/(t end-t start).

collect fixes(O1,O2,Fixes) :-

findall(T, fix(O1) atp ( , ) at T, L1),

findall(T, fix(O2) atp ( , ) at T, L2),

append(L1,L2,L).

sort without duplicates(L, Fixes).

integral(O1,O2,[ ],0).

integral(O1,O2,[T1|[T2|T]], Int) :-

traj(O1) atp (X11,Y11) at T1, traj(O1) atp (X12,Y12) at T2,

traj(O2) atp (X21,Y21) at T1, traj(O2) atp (X22,Y22) at T2,

compute(X11, Y11, X12, Y12, X21, Y21, X22, Y22, T1, T2, Int1),

integral(O1,O2,[T2|T], Int2), Int = Int1 + Int2.

Knowledge Discovery on Trajectories In this section we provide a very
compact STACLP example program which shows how using the clustering tool
can yield an alternative, more sophisticated, solution to the problem of discov-
ering animal couples or herds.

In Section 5.1, a fully deductive approach has already been presented, where
a simple criterion was adopted, based on contemporary fixes, to discover animal
couples. A more precise and general solution to the problem can be achieved
by simply noticing that animal couples and animal herds are simply groups of
animal which, in general, move together. This can be straightforwardly rephrased
saying that animal herds are clusters of animal individuals whose mutual distance
is, on average, small. This leads to the following STACLP formalisation, where
trajectories of animals are clustered using the k-means algorithm, and focusing
on a time interval [tstart, tend]:

objs to cluster(O list) :-

findall(X, (fix(X) atp ( , ) at , X=cut obj( )), O list).

fix(cut obj(X)) atp (X,Y) at t start :- traj(obj(X)) atp (X,Y) at t start.

fix(cut obj(X)) atp (X,Y) at t end :- traj(obj(X)) atp (X,Y) at t end.

fix(cut obj(X)) atp (X,Y) at T :- T > t start, T<t end,

fix(obj(X)) atp (X,Y) at T.

cluster member(K,O list) :- findall( Obj,

(assignments(A), member(cluster(Obj,K), A)),



O list).

couples([Obj1, Obj2]) :- cluster member( , [Obj1, Obj2]),

sex(Obj1, S1), sex(Obj2, S2), S1 != S2.

herds(O list) :- cluster member( , O list),

length(O list, N), N>=min herd size.

The first rule redefines the objs to cluster predicate in order to cluster
the new cut obj(X) objects, obtained by clipping the trajectories of the original
obj(X) objects on the [tstart, tend] time interval (see the above definitions for
fix(cut obj(X))). The cluster member predicate provides the list of objects
belonging to a cluster and it is exploited to find out couples and herds by checking
the size of clusters. In the rules defining couples and herds, we assumed (i) to be
interested in clusters of two individuals of different sex, and that (ii) a necessary
(and sufficient) condition for a group of animals to be a herd is that its size is
not smaller that a given threshold. Of course, it is easy to insert more complex
conditions on the properties of the group and of the animals it contains (e.g.,
checking the respect of given proportions in the number of male and female
individuals).

Another aspect of interest for the analyst is the existence of animals that, in
reaction to an event, leave the herd. This can be seen as an alternative measure
of dispersion of the herd, based on the behaviour of single animals w.r.t. the herd
they belong to instead of considering only the overall behaviour of the heard.

Animals which abandon their herd can be defined as individuals that before
the event belong to a given cluster, but, after the event, they move closer to
other clusters. We therefore need to cluster animals w.r.t. their trajectory before
the event, and then check if the cluster assignments are still valid also after
event. The first step has already been performed in the previous example. To
implement the second one, we compute first the centre of each cluster after the
event (essentially with the same rule used to define the clustering engine), then
for each object we find the closest centre to verify if it corresponds to the cluster
the object belongs to:

fix(centre(after event,K)) atp (X,Y) at T :-

cluster(K, O list), rename objs(K, O list, A list),

member(Obj, O list), fix(Obj) atp ( , ) at T,

compute avg position(A list, K, T, X, Y).

rename objs(K, [], []).

rename objs(K, [before(X) | Objs], [A1|As]) :- A1=cluster(after(X),K),

rename objs(K, Objs, As).

run away(obj(X)) :- cluster(K before, O list),

member(before(X), O list),

closest(after event, after(X), K after),

K after != K before.

The centre of each cluster k is named centre(after event, k), in order
to obtain object names syntactically compatible with the rules which define the
clustering engine, and in particular those which define the closest, used to



define the run away predicate shown above. Finally, the rename objs predicate
has the simple purpose of converting the cluster assignment of each before(X)

object into the equivalent assignment for the corresponding after(X) object
(i.e., the second half of each trajectory is labelled according to the clustering
obtained on the first half).

6 Conclusions

The main aim of the framework we presented is to provide the user with high level
mechanisms to represent and reason on spatio-temporal data. The peculiarity of
this approach is that it exhibits both deductive and inductive capabilities, thus
offering the possibility to make analysis both exploiting domain expert rules and
general background knowledge (deduction) and driven by observations (induc-
tion). Furthermore we sketched how this approach can be successfully applied to
a concrete case study concerning behavioural ecology that well represents this
two kinds of reasoning.

We are currently improving the implementation of STACLP, which is at
a prototype stage and lacks of optimization techniques. As a future research
direction we are moving towards the introduction of other knowledge discovery
techniques, such as classification and frequent patterns, in this framework. This
leads to challenging and interesting research problems as well a wide range of
possible applications related to mobile devices. As an example, classification
technique applied to trajectories can be exploited to predict the future direction
of a moving objects. For example detecting frequent patterns of a number of
trajectories representing car movements can identify routes with high traffic
density depending from the time of the day.

Another promising direction we intend to address concerns qualitative spatio-
temporal reasoning. Starting from some preliminary results presented in [42], we
aim at defining forms of qualitative reasoning on trajectories thus providing sup-
port for qualitative spatio-temporal reasoning, possibly enriched with uncertainty
information. As an example, a typical qualitative spatio temporal query can be
to find out whether, when and with which degree of uncertainty a given trajec-
tory crosses a specific area (e.g. traffic related to a particular event in a given
area).

References

1. A.I. Abdelmoty, N.W. Paton, M.H. Williams, A.A.A. Fernandes, M.L. Barja, and
A. Dinn. Geographic Data Handling in a Deductive Object-Oriented Database. In
DEXA Conf., volume 856 of LNCS, pages 445–454. Springer, 1994.

2. T. Abraham. Knowledge Discovery in Spatio-Temporal Databases. PhD thesis,
School of Computer and Information Science, Faculty of Information Technology,
University of South Australia, 1999.

3. R. Agrawal and R. Srikant. Mining sequential patterns. In Philip S. Yu and Arbee
S. P. Chen, editors, Eleventh International Conference on Data Engineering, pages
3–14, Taipei, Taiwan, 1995. IEEE Computer Society Press.



4. M. Ankerst, M. Breunig, H.-P. Kriegel, and J. Sander. Optics: Ordering points to
identify the clustering structure. In Proc. ACM SIGMOD Int. Conf. on Manage-
ment of Data (SIGMOD’99). ACM Press, 1999.

5. A. Belussi, E. Bertino, and B. Catania. An extended algebra for constraint
databases. IEEE TKDE, 10(5):686–705, 1998.

6. M.H. Böhlen, C.S. Jensen, and M.O. Scholl, editors. Spatio-Temporal Database
Management, volume 1678 of Lecture Notes in Computer Science. Springer, 1999.

7. T. Ceccarelli, D. Centeno, F. Giannotti, A. Massolo, C. Parent, A. Raffaetà,
C. Renso, S. Spaccapietra, and F. Turini. The behaviour of the Crested Porcupine:
the complete case study. Technical report, DeduGIS - EU WG, 2001.

8. J. Chomicki and P.Z. Revesz. Constraint-Based Interoperability of Spatiotemporal
Databases. GeoInformatica, 3(3):211–243, 1999.

9. P. Cotofrei. Statistical temporal rules. In Proceedings of the 15th Conf. on Com-
putational Statistics, 2002.

10. P. Cotofrei and K. Stoffel. Classification rules + time = temporal rules. In Pro-
ceedings of the 2002 Int. Conf. on Computational Science, 2002.

11. G. Das, K.-I. Lin, H. Mannila, G. Renganathan, and P. Smyth. Rule discovery
from time series. In Knowledge Discovery and Data Mining, pages 16–22, 1998.

12. M. Ester, H.-P. Kriegel, and J. Sanders. Algorithms and applications for spatial
data mining. In [35], pages 160–187.

13. O. Etzion, S. Jajodia, and S. Sripada, editors. Temporal Databases: Research and
Practice, volume 1399 of Lecture Notes in Computer Science. Springer, 1998.

14. C. Faloutsos and K.-I. Lin. Fastmap: a fast algorithm for indexing of traditional
and multimedia databases. In SIGMOD Conf., pages 163–174. ACM, 1995.

15. T. Frühwirth. Temporal Annotated Constraint Logic Programming. Journal of
Symbolic Computation, 22:555–583, 1996.

16. T. C. Fu, F. L. Chung, V. Ng, and R. Luk. Pattern discovery from stock time
series using self-organizing maps. In Workshop Notes of KDD2001 Workshop on
Temporal Data Mining, 2001.

17. S. Gaffney and P. Smyth. Trajectory clustering with mixture of regression models.
In KDD Conf., pages 63–72. ACM, 1999.

18. P. Geurts. Pattern extraction for time series classification. Lecture Notes in Com-
puter Science, 2168:115–127, 2001.

19. S. Grumbach, P. Rigaux, and L. Segoufin. Spatio-Temporal Data Handling with
Constraints. GeoInformatica, 5(1):95–115, 2001.

20. S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering data streams.
In IEEE Symposium on Foundations of Computer Science, pages 359–366, 2000.

21. R.H. Güting. An Introduction to Spatial Database Systems. VLDB Journal,
3(4):357–400, 1994.

22. J. Han, M. Kamber, and A. K. H. Tung. Spatial clustering methods in data mining:
a survey. In [35], pages 188–217.

23. S. K. Harms, J. Deogun, and T. Tadesse. Discovering sequential association rules
with constraints and time lags in multiple sequences. In Proceedings of the 13th
Int. Symposium on Methodologies for Intelligent Systems, pages 432–441, 2002.

24. A. K. H. Tung J. Hou and J. Han. Spatial clustering in the presence of obstacles.
In Proceedings of the 17th International Conference on Data Engineering, 2001.

25. X. Jin, L. Wang, Y. Lu, and C. Shi. Indexing and mining of the local patterns in
sequence database. In Proceedings of the Third International Conference on Intel-
ligent Data Engineering and Automated Learning, pages 68–73. Springer-Verlag,
2002.



26. P.C. Kanellakis, G.M. Kuper, and P.Z. Revesz. Constraint query languages. Jour-
nal of Computer and System Sciences, 51(1):26–52, 1995.

27. E. Keogh, J. Lin, , and W. Truppel. Clustering of time series subsequences is
meaningless: Implications for past and future research. In Proceedings of the 3rd
IEEE International Conference on Data Mining, 2003.

28. A. Ketterlin. Clustering sequences of complex objects. In KDD Conf., pages 215–
218. ACM, 1997.

29. K. Koperski. A Progressive Refinement Approach to Spatial Data Mining. PhD
thesis, Simon Frasery University, 1999.

30. K. Koperski and J. Han. Discovery of spatial association rules in geographic infor-
mation databases. In Advances in Spatial Databases, Proc. of 4th Symp. SSD’95,
pages 47–66, Berlin, 1995. Springer-Verlag.

31. K. Koperski, J. Han, and N. Stefanovic. An efficient two-step method for classifi-
cation of spatial data, 1998.

32. M. Koubarakis and S. Skiadopoulos. Tractable Query Answering in Indefinite
Constraint Databases: Basic Results and Applications to Querying Spatiotemporal
Information. In [6], pages 204–223, 1999.

33. P. Mancarella, A. Raffaetà, C. Renso, and F. Turini. Integrating Knowledge Rep-
resentation and Reasoning in Geographical Information Systems. International
Journal of GIS. To appear.

34. H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of frequent episodes in
event sequences. Data Mining and Knowledge Discovery, 1(3):259–289, 1997.

35. H. J. Miller and J. Han, editors. Geographic Data Mining and knowledge Discovery.
Taylor & Francis, 2001.

36. M. Nanni. Clustering Methods for Spatio-Temporal Data. PhD thesis, Dipartimento
di Informatica, Università di Pisa, 2002.

37. R. T. Ng. Detecting outliers from large datasets. In [35], pages 218–235.
38. M. A. Orgun and W. Ma. An Overview of Temporal and Modal Logic Program-

ming. In ICTL’94, volume 827 of Lecture Notes in Artificial Intelligence, pages
445–479. Springer, 1994.

39. J. Paredaens. Spatial databases, the final frontier. In ICDT’95, volume 893 of
Lecture Notes in Computer Science, pages 14–32. Springer, 1995.

40. A. Raffaetà and T. Frühwirth. Spatio-Temporal Annotated Constraint Logic Pro-
gramming. In PADL’01, volume 1990 of LNCS, pages 259–273. Springer, 2001.

41. A. Raffaetà, C. Renso, and F. Turini. Enhancing GISs for Spatio-Temporal Rea-
soning. In GIS’02, pages 35–41. ACM, 2002.

42. A. Raffaetà, C. Renso, and F. Turini. Qualitative Spatial Reasoning in a Logical
Framework. In AI*IA Conf., volume 2829 of LNAI, pages 78–90, 2003.

43. D. Randell, Z. Cui, and A. Cohn. A Spatial Logic based on Regions and Connection.
In KR1992, pages 165–176. Morgan Kaufmann, 1992.

44. G. Sheikholeslami, S. Chatterjee, and A. Zhang. Wavecluster: A multi-resolution
clustering approach for very large spatial databases. In Proceedings of the 24rd
International Conference on Very Large Data Bases, pages 428–439. Morgan Kauf-
mann Publishers Inc., 1998.

45. S. Shekhar and Y. Huang. Discovering spatial co-location patterns: A summary of
results. In Lecture Notes on Computer Science, editor, SSTD, volume 2121, pages
236–256, 2001.

46. S. Shekhar, Y. W. Huang, C. T. Lu S., and Chawla. Data Mining for Scientific
and Engineering Applications, chapter What’s spatial about spatial data mining:
three case studies. Kluwer Academic Publishers, 2001.



47. S. Shekhar, C.-T. Lu, and P. Zhang. Detecting graph-based spatial outliers: algo-
rithms and applications (a summary of results). In Proceedings of the 7th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages
371–376. ACM Press, 2001.

48. S. Shekhar, P. Zhang, R. R. Vatsavai, and Y. Huang. Research accomplish-
ments and issues on spatial data mining. In White paper of the Geospatial
Visualization and Knowledge Discovery Workshop, Lansdowne, Virginia, 2003.
http://www.ucgis.org/Visualization/.

49. S. Spaccapietra, editor. Spatio-Temporal Data Models & Languages (DEXA Work-
shop). IEEE Computer Society Press, 1999.

50. R. Srikant and R. Agrawal. Mining sequential patterns: generalisations and perfor-
mance improvements. In Proceedings of the 5th Int. Conf. on Extending Database
Technology (EDBT’96), pages 3–17, 1996.

51. N. Sumpter and A. Bulpitt. Learning spatio-temporal patterns for predicting object
behaviour. Image and Vision Computing, 18(9):697–704, 2000.

52. A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass editors.
Temporal Databases: Theory, Design, and Implementation. Benjamin/Cummings,
1993.

53. I. Tsoukatos and D. Gunopulos. Efficient mining of spatiotemporal patterns. In
Lecture Notes on Computer Science, editor, Proceedings of SSTD 2001, volume
2121, pages 425–442, 2001.

54. F. Wolter and M. Zakharyaschev. Spatio-temporal representation and reasoning
based on RCC-8. In KR2000, pages 3–14. Morgan Kaufmann, 2000.

55. M. F. Worboys. GIS - A Computing Perspective. Taylor & Francis, 1995.
56. T. Yairi, Y. Kato, and K. Hori. Fault detection by mining association rules from

house-keeping data. In Proc. of International Symposium on Artificial Intelligence,
Robotics and Automation in Space, 2001.

57. T. Zhang, R. Ramakrishnan, and M. Livny. Birch: an efficient data clustering
method for very large databases. In Proceedings of the 1996 ACM SIGMOD in-
ternational conference on Management of data, pages 103–114. ACM Press, 1996.


