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Abstract. In several contexts and domains, hierarchical agglomerative
clustering (HAC) offers best-quality results, but at the price of a high
complexity which reduces the size of datasets which can be handled.
In some contexts, in particular, computing distances between objects is
the most expensive task. In all such situations the standard approach
to HAC, which first computes all object-to-object distances and then
performs the real clustering process, quickly yields high computational
costs and large running times. One of the key means for containing such
problem naturally lies in methods that can save a significant portion
of distance computations, resulting in a smaller complexity. In this pa-
per we propose a pruning heuristics well integrated in all the phases of
the HAC process, developed for two HAC variants: single-linkage and
complete-linkage. After describing the method, we provide some theo-
retical evidence of its pruning power, followed by an empirical study
of its effectiveness over different data domains, with a special focus on
dimensionality issues.

1 Introduction

In several domains, hierarchical agglomerative clustering algorithms are able to
yield best-quality results. However, this class of algorithms is characterized by a
high complexity which reduces the size of datasets which can be handled. In the
most standard cases, such complexity is O(dN2+N2 log N), N being the number
of objects in the dataset and d the cost of computing the distance between
two objects, which is the result of O(N2) distance computations followed by
O(N2) selection steps, each having cost O(log N). In typical settings, d is either
a constant or very small w.r.t. log N , so that the algorithm complexity is usually
simplified to O(N2 log N).

In some contexts, however, computing distances can be a very expensive task,
such as in the case of high-dimensional data or complex comparison functions,
e.g., the edit distance between long strings. In these cases, the computation of all
object-to-object distances dominates the overall cost of the clustering process,
and so any attempt to improve performances should aim at saving a significant
portion of distance computations. To the best of our knowledge, this aspect



has not been explicitly studied in literature, yet, despite the fact that it has
been marginally mentioned in several works (e.g., most of those described in
Section 2.2).

In this work, we will consider two popular instances of the general hierarchical
agglomerative algorithms family, namely the single- and complete-linkage ver-
sions, and propose a simple pruning strategy that improves their performances
by reducing the number of object-to-object distances to compute without af-
fecting the results. A formal proof of its effectiveness under some assumptions
will also be given, together with an extensive experimental session to test it on
different contexts and conditions.

2 Background and related work

In this section we will provide a short description of the general hierarchical
agglomerative clustering schema, instantiating it to the two specific cases dis-
cussed in this paper (i.e., the single-linkage and the complete-linkage clustering
algorithms). Finally, a brief summary of related work will follow.

2.1 Hierarchical agglomerative clustering (HAC)

The objective of hierarchical clustering algorithms is to extract a multi-level par-
titioning of data, i.e., a partitioning which groups data into a set of clusters and
then, recursively, partitions them into smaller sub-clusters, until some stop cri-
teria are satified [6]. The result of hierarchical clustering is usually summarized
by means of a tree-structure called dendogram, where each step in the cluster-
ing process is illustrated by a join of the tree. This structure can be used in a
later phase to extract several different (plain) partitionings of data by breaking
it at different levels. The family of algorithms usually applied to obtain such
hierarchical structure can be divided in two main categories: divisive and ag-
glomerative. Divisive algorithms start by considering all data as a single large
cluster, and iteratively choose a cluster and split it in two smaller clusters. The
process is repeated until no cluster can be further split, i.e., each cluster contains
only one object. Agglomerative algorithms, as the name suggests, work in the
opposite way: they start with several clusters containing only one object of the
dataset, and iteratively two clusters are chosen and merged to form one larger
cluster. The process is repeated until only one large cluster is left, that contains
all objects. In this paper we will focus on the latter class of algorithms.

The general structure of an agglomerative clustering algorithm can be sum-
marized as in Figure 1. As we can notice, there are two key operations in the
general schema which still need to be instantiated: the choice of the best couple
of clusters, and the computation of the distances between the new cluster and
the existing ones. Each different instantiation of these two operations results into
a different agglomerative clustering algorithm.

The simplest and most common way for selecting the clusters to merge is
to choose the closest pair, i.e., the two clusters with minimum distance. Both



Algorithm: Hierarchical Agglomerative Clustering
Input: a dataset D

Output: a tree structure T

1. C := {{o}| o ∈ D} and T = ∅;
2. while |C| > 1 do
3. Select best couple (a, b) s.t. a, b ∈ C;
4. Create a new cluster c = a ∪ b, and let a and b be children of c in T ;
5. C := C ∪ {c} \ {a, b};
6. foreach x ∈ C do
7. Compute the distance between x and c;
8. return T ;

Fig. 1. General schema for hierarchical agglomerative clustering algorithms

the algorithms we will consider in this paper make use of this selection strategy.
However, other, more complex methods are possible, e.g., approaches based on
entropy minimization or cluster size balancing.

In a similar way, several different choices can be adopted in computing the
distances between compound clusters, usually obtained by aggregating the dis-
tances between the objects belonging to the two clusters. The most usual aggre-
gation operators adopted are the minimum, maximum and average, but other
alternatives are possible. The clustering algorithms we will consider in this paper
make use of the first two aggregation policies:

– Single-linkage clustering: at each iteration the two closest clusters are merged,
and the distance between two clusters is computed as the distance between
the closest pair of objects, excluding couples belonging to the same cluster.

– Complete-linkage clustering: as in the previous case, the two closest clusters
are merged at each iteration, and the distance between clusters is equal to
the distance between the furthest couple of their objects.

In particular, the complete-linkage algorithm in general produces tightly
bound or compact clusters, while the single-link algorithm, on the contrary,
suffers from a chaining effect, i.e., it has a tendency to produce clusters that are
straggly or elongated [6].

2.2 Related work

Efficiency is a strong issue in hierarchical clustering, and it has been treated in
literature in many different ways. In the following we summarize some of the
main approaches to the problem.

Some approaches seek slight computational complexity improvements for the
HAC problem. For example, [4] introduces a data structure for dynamic clos-
est pair retrieval, which is directly applicable to hierarchical clustering, and
which is shown to reach a O(n2) complexity for simple aggregation operators



(e.g., maximum, minimum and average). For specific contexts, even faster solu-
tions have been proposed, such as a sub-quadratic single-linkage method for low-
dimensional data [7], and a O(n log n) complete-linkage solution for Rd spaces
(d ≥ 1) with L1 and L∞ metrics [8]. While from a computational complexity
viewpoint these approaches reach a substantial increase in performances (at least
in particular contexts), they do not take into account the pragmatic possibility
of having very expensive distance computations, which is exactly the context we
will focus on in this paper.

When some degree of approximation in the hierarchical clustering structure
can be tolerated, several approximation approaches can be followed. The simplest
solution consists in applying sampling methods to select a reasonably small sub-
set of data and in performing the clustering process on that. Other approaches
try to reduce the data size by aggregation, such as (i) grid-based clustering so-
lutions for vectorial datasets [6], which group data points into cells of a (multi-
dimensional) grid and label each cell with some aggregated information, and (ii)
the data bubbles approach [3], which extends the grid-based approach to non-
vectorial data by replacing cells with bubbles, i.e., groups of objects virtually
replaced by a representative element with additional aggregated information. Fi-
nally, an alternative solution consists in mapping the data to an Euclidean space
of reasonable dimension (e.g., using the FastMap algorithm [5]) and in perform-
ing the clustering process on it, so that expensive object-to-object distances can
be replaced by a cheaper (Euclidean) distance.

Beside the traditional approaches mentioned so far, there are some alternative
clustering algorithms which extract a hierarchical clustering structure from data
by following different principles. Here we mention only one of the most recent
and general proposals, namely density-based clustering [2]. The key idea is that
clusters should represent dense areas of the data space, separated by rare zones.
Different density thresholds yield clusters of different granularity, and thus a
multiple-level clustering structure can be inferred, which is essentially equivalent
to a dendogram.

3 HAC with Enhanced Distance Management

The basic assumption of our method is that our distance function is a metric.
Then, the key idea is that from the exact distances of a limited number of
couples it is possible to derive useful approximated values for all object-to-object
distances. Such approximations can be easily updated at each iteration of the
HAC algorithm, and can be used to effectively limit the number of exact distance
computations needed along the whole process.

3.1 Distance approximations

As basic means for estimating unknown distances, we propose to use the trian-
gular inequality, a property satisfied by all metrics:



∀a, b, p ∈ D : d(a, b) ≤ d(a, p) + d(p, c)

where d is a metric defined over a domain D. With some simple math and
exploiting the symmetry property of metrics, we can rewrite the above expression
as follows:

∀a, b, p ∈ D : |d(p, a) − d(p, c)| ≤ d(a, b) ≤ d(p, a) + d(p, c) (1)

Now, assuming to know all |D| distances d(p, a) for some fixed element p ∈ D,
which we will call pivot, the above formula can be directly used to provide a
bounding interval for the distance between any couple (a, b) of objects. Hence-
forth, we will refer to such bounding intervals as approximated distances or simply
approximations. In particular, we notice that if some object a is very close to the
pivot, the d(p, a) values in (1) will be very small, and therefore the approxima-
tion of any distance d(a, b) from a will be very tight. Exact distances represent
a particular case of approximation, where the lower and upper bounds coincide.
We refer to this case also with the term perfect approximation.

In our approach, the computation of all object-to-object distances, usually
performed at the beginning of HAC algorithms, is replaced by (i) the computa-
tion of the |D| exact distances relative to a randomly chosen pivot, and (ii) the
approximation of all other distances by following the method outlined above.

3.2 Enhanced Distance Management

The method shown in the previous section can be used to provide an initial
set of approximations aimed at replacing as much as possible the full matrix
of distances. In the following we will describe: (i) how such approximations can
be used to save exact distance computations in the couple selection phase (step
3 in Figure 1); (ii) how they can be composed to derive approximations for a
newly created cluster (steps 6–7); and (iii) how to exploit them also in the on
demand computation of exact distances between compound clusters, when they
are required in the couple selection phase.

Enhanced couple selection. Both the single- and complete-linkage algorithms,
at each iteration find the couple of clusters with minimal distance, and merge
them. A simple method for searching such couple exploiting the approximated
distances, is the following:

1. Select the couple (a, b) which has the lowest-bounded approximation;
2. if the approximation is perfect
3. then return (a, b);
4. else compute the exact d(a, b) and return to step 1;

Essentially, a two-steps selection is performed: a first selection of the most
promising candidate couple is performed by means of the known approxima-
tions; if the best approximation is perfect, then all other couples certainly have



an equal or greater distance, and therefore we can safely choose the selected
couple for the merging phase; otherwise, another step is necessary, i.e., the exact
distance of the couple needs to be computed and checked to be still the best
candidate. The last test is implicitly performed by immediately repeating the
selection step.

Deriving new approximations. When two clusters are merged, all distances
from the resulting new cluster have to be computed, exact or approximated, so
that it can be considered in the next iterations of the selection-merging process.
Analogously to the case of exact distances, the approximations for the new clus-
ter can be derived by aggregating the already known approximations of the two
clusters it originated from. In particular, we exploit a simple property of the max
and min aggregation operators, that are used in the single- and complete-linkage
HAC algorithms:

Proposition 1. Let x, y, l1, u1, l2, u2 be real numbers such that x ∈ [l1, u1] and
y ∈ [l2, u2]. Then we have that:

min{x, y} ∈ [min{l1, l2},min{u1, u2}] (2)

max{x, y} ∈ [max{l1, l2},max{u1, u2}] (3)

Proof. Simply observe that min{x, y} ≤ x ≤ u1 and min{x, y} ≤ y ≤ u2, and
thus min{x, y} ≤ min{u1, u2}. With a reversal approach, we see that min{l1, l2} ≤
l1 ≤ x and min{l1, l2} ≤ l2 ≤ y and thus min{l1, l2} ≤ min{x, y}.

In the single-linkage algorithm, the distance between two clusters c and c′ is
computed as the minimum of the object-to-object distances between elements
of the two clusters, i.e., d(c, c′) = mina∈c,b∈c′ d(a, b). If c is obtained by merg-
ing clusters c1 and c2, then we can write d(c, c′) = mina∈c1∪c2,b∈c′ d(a, b), and
therefore d(c, c′) = min{d(c1, c

′), d(c2, c
′)}. This property, together with (2),

provides a straightforward means for approximating all distances d(c, c′) from
c, given that we know an approximation for both its components c1 and c2.
A completely symmetrical reasoning can be repeated for the complete-linkage
algorithm, which makes use of inequality (3).

Enhanced distance computation. In the (enhanced) selection step it is often
necessary to compute the exact distance between two clusters. That happens
whenever the best candidate couple found is associated with only an approx-
imated distance. The trivial way to do it, consists in computing all distances
between each object in the first cluster and each object in the second one and
aggregating them with the proper operator (min or max). An obvious drawback

of this solution is that it easily leads to compute all |D|·(|D|−1)
2 object-to-object

distances, which is exactly what we wanted to avoid. A surprisingly effective
enhancement can be obtained by exploiting the following simple fact:

Proposition 2. Let c1, c2, c
′ be three distinct clusters and c = c1∪c2, d(c1, c

′) ∈
[l1, u1], d(c2, c

′) ∈ [l2, u2]. If u1 ≤ l2, then:



– In the single-linkage algorithm: d(c, c′) = d(c1, c
′)

– In the complete-linkage algorithm: d(c, c′) = d(c2, c
′)

Proof. In both cases we have that d(c1, c
′) ≤ d(c2, c

′). Therefore, in the first
case: d(c, c′) = min{d(c1, c

′), d(c2, c
′)} = d(c1, c

′), while in the second one:
d(c, c′) = max{d(c1, c

′), d(c2, c
′)} = d(c2, c

′).

The basic idea is to compute the distance between compound clusters by
recursively analyzing their components (i.e., the two sub-clusters they originated
from), until we reach simple objects. At each step of the recursion, then, the
above property allows to prune unnecessary distance computations. The process
for the single-linkage algorithm can be summarized as in Figure 2. If the clusters
to compare contain single objects, then the algorithm simply computes their
distance (step 1), otherwise it breaks down one of the compound clusters into
its components (steps 2–4), and recursively analyzes them. In the analysis of
sub-components, priority is given to the most promising one, i.e., that with the
smaller lower bound distance (step 5), to the purpose of maximizing the pruning
opportunities offered by Proposition 2. Step 7 implements that by avoiding to
compute the distance for the less promising component when it is not strictly
necessary.

The complete-linkage version of the algorithm is essentially the same, and can
be obtained by just modifying the conditions of step 5 and 7 with, respectively,
(u1 < u2) and (d1 > u2), and by replacing min with max in step 9.

Algorithm: EDC
Input: two clusters a and b

Output: the exact distance d(a, b)

1. if a and b contain only one object then Stop and return d(a, b);
2. if a contains only one object then Swap a and b;
3. Let a1, a2 be the clusters which compose a, i.e., a = a1 ∪ a2;
4. Let d(a1, b) ∈ [l1, u1] and d(a2, b) ∈ [l2, u2];
5. if l1 > l2 then Swap a1 and a2;
6. d1 := EDC(a1, b);
7. if d1 < l2 then Stop and return d1;
8. d2 := EDC(a2, b);
9. return min{d1, d2};

Fig. 2. Enhanced Distance Computation (EDC) for single-linkage HAC

3.3 Selecting pivots

As we noticed in Section 3.1, the approximations computed before the clustering
process can have variable tightness. In particular, the approximations for objects



close to the pivot will be tight, while the others will be looser. A natural extension
of the method consists in choosing more than one pivot, so that a larger number
of objects will have a pivot near to them, and therefore a larger quantity of
approximated distances will result tight. The expected consequence is that the
pruning strategies described in the previous sections will be more effective.

Choosing several pivots, we obtain several approximations for the same dis-
tance – one for each pivot – so they need to be composed together in some way.
The approximation computed by means of each pivot represents a constraint
that the real distance must satisfy. Therefore, the composition of approxima-
tions corresponds to the conjunction of the constraints they represent, which is
simply implemented by intersecting of the available approximations.

A more difficult problem is the choice of the pivots. While a simple, repeated
random choice would be a possible solution, it provides no guarantee on the
results. In particular, the underlying assumption of a random selection would be
that the objects in our dataset cover the domain space essentially in a uniform
way. On the contrary, the very fact of applying a clustering algorithm assumes
to some degree the existence of some structure in the data, and in particular
the existence of agglomerations, i.e., clusters. On one hand, choosing several
pivots in the same cluster would result in an over-refinement of already tight
approximations (those relative to the objects in the cluster); on the other hand,
clusters without pivots would generate only loose approximations, probably of
little help in the pruning process. Therefore, assuming that a dataset is really
composed of a number of clusters, an optimal choice for pivots would assign
at least one pivot to each cluster. In what follows, we provide a heuristic for
selecting well spread pivots, together with a proof of its value.

The key idea of our pivot selection heuristics is the following: assuming to
have very well defined clusters in our data, each point is expected to be far
from the objects of other clusters, at least if compared with the distance from
other objects in the same cluster. Therefore, given a set of pivots, we can rea-
sonably search a new good pivot, i.e., a pivot which belongs to an uncovered
cluster, among those objects which are far from all existing pivots. These are
essentially the same ideas applied in [9], where a similar approach has been used
for approximated clustering. Figure 3 shows our pivot selection method.

The very first pivot is chosen randomly (steps 1–2), while the following ones
are chosen as mentioned above. In particular, the furthest object from the exist-
ing set of pivots is selected, i.e., the object which maximizes the distance from
the closest pivot (step 4). This simple algorithm seems to capture reasonably
well the cluster structure of data, at least for clean-cut clusters, as indicated by
the property proven below.

Definition 1 (δ-separateness). Given a set of objects D and a distance d(),
D is called δ-separated if it can be split into at least two clusters, such that the
following holds: ∀a, b, a′, b′ ∈ D : if a and b belong to the same cluster while a′

and b′ do not, then d(a′, b′) > δ · d(a, b).

Essentially, δ-separateness requires that the minimum distance between clus-
ters is at least δ times larger than the maximum diameter of clusters.



Algorithm: Pivots Selection
Input: a dataset D and an integer n

Output: a set P of n pivots

1. Randomly select an object p0 ∈ D;
2. P := {p0};
3. while |P | < n do
4. p = arg maxo∈D{minp′∈P d(p′, o)};
5. P := P ∪ {p};
6. return P ;

Fig. 3. Algorithm for selecting the initial pivots

Proposition 3. Let D be a 1-separated dataset composed of n clusters, and let
be k ≥ n. Then, the output of PivotsSelection(D,k) contains at least one object
from each cluster.

Proof. At any iteration of the algorithm, let assume that at least one cluster c
has no object in the set P of actual pivots. Any object o′ in any cluster c′ that
already has a pivot p′ ∈ P , will have a distance from P not greater than d(o′, p′).
Any object o in cluster c, on the other hand, will have a distance from P equal
to d(o, p′′), for some p′′ ∈ P . Since we assumed that D is 1-separated and o
and p′′ belong to different clusters, we have that d(o′, p′) ≤ d(o, p′′). As a conse-
quence, o cannot be the next pivot, since there is an object which is farther from
P . That holds for any object in clusters that contain a pivot in P , so the next
pivot will belong to an uncovered cluster. The reasoning can be applied induc-
tively over the first n iterations of the algorithms, with the first random pivot as
base case, yielding n pivots taken from different clusters. The remaining k−n it-
erations, obviously, will simply pick other pivots from already covered clusters.

4 Performance evaluation

In this section we provide some experimental and theoretical evaluations of the
performances of the HAC algorithms with enhanced distance management de-
scribed in this work.

4.1 Theoretical evaluation

While any realistic context usually shows some kind of irregularity, such as noise
(i.e., objects that do not clearly belong to any cluster) and dispersion (i.e., largely
dispersed clusters, possibly without clear boundaries), it is useful to have some
theoretical estimation of performances also on ideal datasets: on one hand, it
provides at least a comparison reference for empirical studies; on the other hand,



it helps to understand where are the weak and strong points of the algorithm
analyzed. In this section, we provide one of such theoretical hints.

First of all, we introduce a slight variant of the HAC algorithms discussed so
far:

Definition 2 (k-HAC). Given a HAC algorithm and a parameter k, we define
the corresponding k-HAC algorithm as its variant which stops the aggregation
process when k clusters are obtained. That corresponds to replace step 2 in the
general HAC algorithm (Figure 1) with the following: while |C| > k do.

In practice, such variant is quite reasonable, since usually it is easy to provide
some a priori lower bound on the number of clusters we are interested in – obvi-
ously at least 2, but often it is much larger. We notice that: (i) HAC algorithms
are a special case of k-HAC, namely they are 1-HAC algorithms; (ii) 2-HAC and
1-HAC algorithms are essentially equivalent, since the last aggregation step of
1-HAC is trivial (only two clusters are left) and then can be safely omitted.

Proposition 4. Given a 3-separated dataset D with n clusters, and a parameter
k ≥ n, the execution of a k-HAC algorithm with enhanced distance management
over D with k initial pivots will require O(N2

1 +· · ·+N2
k ) object-to-object distance

computations, where (Ni)i=1,...,k are the sizes of the k top level clusters returned
by the algorithm.

Proof. We notice that 3-separateness implies 1-separateness, therefore, with the
assumptions in the claim, Proposition 3 ensures that exactly one pivot per clus-
ter is found. Now, let define din as the maximum distance between two objects in
the same clusters, and Dout as the minimum distance between objects in differ-
ent clusters. For the 3-separateness assumption, we have that 3din < Dout. Now,
the approximated distance between two objects a and b within the same cluster
has an upper bound of d(a, r) + d(b, r) ≤ 2din, r being the pivot of the cluster.
The approximated distance w.r.t. some object b′ from another cluster, instead,
has a minimum of d(b′, r)− d(a, r) ≥ Dout − din > 2din. This means that at the
first iteration, when selecting the couple of objects with minimum distance, all
couples of objects belonging to two different clusters are pruned away by means
of the approximations. The same conditions hold in the next iterations, since
the upper bounds which were used in the pruning are either left unchanged or
(by means of merging or exact computation) smaller1. So, as far as there are
clusters with at least two objects, all the inter-cluster distances will not be com-
puted. This means that the first inter-cluster distance should be computed when
exactly k clusters have been built, but at such moment the k-HAC will stop. As
a result, throughout the whole execution only the intra-cluster distances can be
computed, which are O(N2

i ) for each cluster ci found.

1 More exactly, in the case of complete-linkage algorithms upper bounds can increase,
but at each merging step the new upper bound is equal to the upper bound of one
of the original clusters, and thus satisfies the inequalities we are interested in.



In summary, when clusters are very compact our pruning strategy allows to
limit the distance computations just to couples within the same cluster. That
results in a considerable reduction factor, as stated by the following:

Corollary 1. Under the assumptions of Proposition 4, if k = n and the clus-
ters in D have balanced sizes (i.e., ∀i : Ni ∼ N/k), then the k-HAC algorithm
with enhanced distance computation requires a fraction O(1/k) of the distances
required by the simple HAC algorithm.

Proof. We can rewrite the number of distances stated in Proposition 4 as fol-

lows: O(
∑k

i=1 N2
i ) = O(

∑k

i=1(
N
k

)2) = O(N2

k
). Compared with the O(N2) of

basic HAC, we obtain a O(k) reduction factor in the number of required dis-
tances.

We notice that the above analysis does not take in consideration the prun-
ing capabilities of the Enhanced Distance Computation algorithm. As the next
section will show, in some cases this second component allows to obtain much
larger reduction factors.

4.2 Experimental evaluation

In order to study the effectiveness of our pruning heuristics, and to understand
which factors can affect it, we first performed several experiments over datasets
of different nature, and then tested the reaction of the heuristics over datasets
with increasing dimensionality.

Testing over different domains. In the following we describe the results
obtained applying our pruning heuristics to data from three different domains
with corresponding distance functions:

– 2D points: the dataset is composed of points in the R2 space, and the stan-
dard Euclidean distance is applied. Data were synthesized by means of a
random generator which creates 10 spherical, normally-distributed clusters
with a 5% of noise, i.e., completely random points. Although Euclidean dis-
tance is not an expensive metric, this kind of metric space provides a good
example of low-dimensional data, so it is useful to evaluate the pruning power
of our heuristics on it and to compare the results with the other data types.

– Trajectories: each element represents the movement of an object in a bi-
dimensional space. Trajectories are represented as sequences of points in
space-time, i.e., sequences of triples 〈(x1, y1, t1), . . . , (xn, yn, tn)〉: at each
time ti the represented object is in position (xi, yi), while at other time
points its position is obtained through linear interpolation. The distance
between two objects is defined as the average Euclidean distance between
them, computed over a predefined time interval. Such distance is a metric
and can be computed in linear time w.r.t. the length of the sequences that
represent the objects under comparison (see [10] for the details). Data were



synthesized by means of a random generator, which created 10 clusters in
the following way: 10 completely random trajectories are generated; then the
others are obtained by simulating objects which move randomly but with the
tendency to follow one of the first 10 trajectories.

– Strings: for each experiment, a set of news titles is randomly selected from the
Reuters 21578 dataset [1] and normalized. Strings are compared by means
of the standard edit distance, in particular Levenshtein’s variant, where the
transposition of characters is not allowed. The strings obtained this way
result to be very sparse, i.e., there is not a clear distinction into clusters.

For each data domain, datasets of different sizes were generated, containing
from 400 to 3200 objects. On each dataset, the enhanced versions of single- and
complete-linkage HAC algorithms were applied, stopping the execution when 10
clusters were found, i.e., we applied the k-HAC variants introduced in Section 2
with k = 10. Each experiment, then, was repeated with a variable number of
pivots, with a minimum of 4 and a maximum of 48 pivots. Performances were
evaluated as the ratio between the total number of distance computations re-
quired by the basic HAC algorithms and the number of distances computed by
their enhanced version. We will refer to such ratio as gain factor.

Figures 4, 5 and 6 depict the results of our experiments. The left-hand graph
of each figure shows the performances of the enhanced complete-linkage algo-
rithm, and the right-hand one is for single-linkage. Since the pruning heuristics
have a non-deterministic component – i.e., the choice of the first pivot – each
value of the gain factor is averaged over 16 runs.

We notice that:

– For 2D data (Figure 4), a very high gain factor is obtained for all settings
of the parameters. In particular, the gain factor grows very quickly with the
size of the database, and the best results are obtained with the minimal
number of pivots. The latter fact essentially means that the pruning power
of the EDC procedure (Figure 2) is so high in this context, that only a very
small number of exact distances are needed to capture the structure of data,
and so the k|D| distances computed in the initialization phase (|D| for each
pivot) become a limitation to the performances.

– For trajectory data (Figure 5), the gain factor is moderately high, and the en-
hanced HAC algorithms reduce the number of computed distances of around
an order of magnitude – slightly less for complete-linkage, slightly more for
single-linkage. In this contexts, we notice that the best results are obtained
with a number of pivots around 10–20, and both smaller and higher values
yield a decrease in performances, much more evident in the single-linkage
case.

– Finally, the pruning heuristics seem to behave badly with string data (Fig-
ure 6), yielding a gain factor very close to 1 – i.e., almost no pruning at all –
especially in the case of the single-linkage. In this context, as opposite to the
case of 2D data, the single-linkage algorithm benefits from larger numbers
of pivots, probably because it partially compensates the high sparseness of



these string datasets, helping (though very little) the pruning heuristics. On
the complete-linkage algorithm, instead, the quantity of pivots has only very
little effects on performances.
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Fig. 4. Gain Factor of Complete- and Single-linkage HAC on 2D data

Complete-linkage on Trajectory data
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Fig. 5. Gain Factor of Complete- and Single-linkage HAC on Trajectory data

Due to space limitations, no analysis of execution times is provided here.
We summarize our results as follows: with 2D data the gain in running times
is slightly negative, because the Euclidean metric is extremely cheap, and then,
even though the overhead of our heuristics results to be small, the distances
saved cannot compensate it; with other data, instead, the gain in running times
is almost identical to the gain factor, since the distances are more complex, and
saving even a few of them is enough to balance all the overhead.

The curse of dimensionality. High-dimensional data are known to be very
sparse, a property which makes it difficult to obtain good results with data
mining algorithms, especially clustering. In the following we show which effect
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Fig. 6. Gain Factor of Complete- and Single-linkage HAC on string data

has dimensionality on the performances of our heuristics. Since the latter are
essentially based on the locality of data, i.e., the presence of dense regions, we
can reasonably expect a negative effect.

In this additional set of experiments, we created some datasets composed
of N-dimensional data points, where N is a parameter of our experiments. In
order to make clearer the impact of dimensionality on performances, the data
points were chosen completely random. In fact, if clusters were generated, their
compactness would strongly interact with the sparseness introduced by higher-
dimensionalities, making more difficult the evaluation of the latter. In the ex-
periments, the enhanced algorithms look for 10 clusters, using a fixed number of
pivots (10). Figure 7 depicts the results for both the complete- and single-linkage
versions.
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Single-linkage on n-dimensional data
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Fig. 7. Gain Factor of Complete- and Single-linkage HAC on N-dimensional data

First of all, we clearly see that at the lowest dimensionalities the single-
linkage version achieves very large gain factors even for random data, while
the performances of the complete-linkage algorithm suffer a strong reduction as
compared with previous experiments on 2D data (see Figure 4). However, as



we expected, the higher the dimensionality, the lower the gain factor, in both
versions of the algorithm. In particular, the performance decrease is dramatic
already with few dimensions, and the gain factor remains significant only for
values up to 10.

The results shown above confirm the conclusions drawn from the first set of
experiments described in this section: sparse data make the pruning heuristics
less effective, and thus in such contexts it can save only a small fraction of
object-to-object distances. As already mentioned, the overhead introduced by
the heuristics is small if compared to the core HAC process, so in most cases –
more exactly, in all those cases where distances are not extremely cheap, which
is exactly the kind of context we are interested in – they do not negatively affect
running times even on very sparse data, since the few distances saved by the
heuristics are usually sufficient to balance the overhead.

5 Conclusions

In this paper we introduced an optimization technique for two popular hier-
archical clustering algorithms, and studied its potentialities and its limitations
by means of both theoretical and empirical means. Our optimization technique
tries to save as many distance computations as possible, which is particularly
important for contexts where distances are time-consuming, and we showed that
on reasonably dense datasets it is able to achieve good performances.

As future work, we plan (i) to perform a systematic study aimed at under-
standing more precisely which statistical properties of data influence the perfor-
mances of our pruning heuristics (we already showed that dimensionality is one
of them); (ii) to empirically evaluate the pruning power of the heuristics over
several real world datasets, having different characteristics; and, finally, (iii) to
extend the heuristics to other variants of HAC and, if possible, to other clustering
approaches.
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