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Abstract. In several contexts and domains, hierarchical agglomerative
clustering (HAC) offers best-quality results, but at the price of a high
complexity which reduces the size of datasets which can be handled. In
some contexts, in particular, computing distances between objects is the
most expensive task. In this paper we propose a pruning heuristics aimed
at improving performances in these cases, which is well integrated in all
the phases of the HAC process and can be applied to two HAC vari-
ants: single-linkage and complete-linkage. After describing the method,
we provide some theoretical evidence of its pruning power, followed by
an empirical study of its effectiveness over different data domains, with
a special focus on dimensionality issues.

1 Introduction

In several domains, hierarchical agglomerative clustering algorithms are able to
yield best-quality results. However, this class of algorithms is characterized by a
high complexity which reduces the size of datasets which can be handled. In the
most standard cases, such complexity is O(dN2+N2 log N), N being the number
of objects in the dataset and d the cost of computing the distance between
two objects, which is the result of O(N2) distance computations followed by
O(N2) selection steps, each having cost O(log N). In typical settings, d is either
a constant or very small w.r.t. log N , so that the algorithm complexity is usually
simplified to O(N2 log N).

In some contexts, however, computing distances can be a very expensive task,
such as in the case of high-dimensional data or complex comparison functions,
e.g., the edit distance between long strings. In these cases, the computation of all
object-to-object distances dominates the overall cost of the clustering process,
and so any attempt to improve performances should aim at saving a significant
portion of distance computations. To the best of our knowledge, this aspect
has not been explicitly studied in literature, yet, despite the fact that it has
been marginally mentioned in several works (e.g., most of those described in
Section 2.2).

In this work, we will consider two popular instances of the general hierarchical
agglomerative algorithms family, namely the single- and complete-linkage ver-
sions, and propose a simple pruning strategy that improves their performances
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by reducing the number of object-to-object distances to compute without af-
fecting the results. A formal proof of its effectiveness under some assumptions
will also be given, together with an extensive experimental session to test it on
different contexts and conditions.

2 Background and Related Work

In this section we will provide a short description of the general hierarchical ag-
glomerative clustering schema, instantiating it to the two specific cases discussed
in this paper. Finally, a brief summary of related work will follow.

2.1 Hierarchical Agglomerative Clustering (HAC)

The objective of hierarchical clustering algorithms is to extract a multi-level
partitioning of data, i.e., a partitioning which groups data into a set of clus-
ters and then, recursively, partitions them into smaller sub-clusters, until some
stop criteria are satisfied [3]. Hierarchical algorithms can be divided in two main
categories: agglomerative and divisive. Agglomerative algorithms start with sev-
eral clusters containing only one object, and iteratively two clusters are chosen
and merged to form one larger cluster. The process is repeated until only one
large cluster is left, that contains all objects. Divisive algorithms work in the
symmetrical way. In this paper we will focus on the former class of algorithms.

Algorithm: Hierarchical Agglomerative Clustering
Input: a dataset D
Output: a tree structure T

1. C := {{o}| o ∈ D} and T = ∅;
2. while |C| > 1 do
3. Select best couple (a, b) s.t. a, b ∈ C;
4. Create a new cluster c = a ∪ b, and let a and b be children of c in T ;
5. C := C ∪ {c} \ {a, b};
6. foreach x ∈ C do
7. Compute the distance between x and c;
8. return T ;

Fig. 1. General schema for hierarchical agglomerative clustering algorithms

The general structure of an agglomerative clustering algorithm can be sum-
marized as in Figure 1. As we can notice, there are two key operations in the
general schema which still need to be instantiated: the choice of the best couple
of clusters, and the computation of the distances between the new cluster and
the existing ones. Each different instantiation of these two operations results
into a different agglomerative clustering algorithm. In this paper, the cluster
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selection in step 3 is performed by selecting the closest pair of clusters, while
the distance computation in step 7 is performed in two alternative ways: by
extracting the distance between the closest pair of objects (excluding couples
belonging to the same cluster), which yields a so called Single-linkage algorithm;
and by extracting the distance between the farthest pair of objects, which yields
a Complete-linkage algorithm. In particular, the complete-linkage algorithm in
general produces tightly bound or compact clusters, while the single-link algo-
rithm, on the contrary, suffers from a chaining effect, i.e., it has a tendency to
produce clusters that are straggly or elongated [3].

2.2 Related Work

Efficiency is a strong issue in hierarchical clustering, and it has been treated in
literature in many different ways. In the following we summarize some of the
main approaches to the problem.

Some approaches seek slight computational complexity improvements for the
HAC problem. For example, [2] introduces a data structure for dynamic clos-
est pair retrieval, which is directly applicable to hierarchical clustering, and
which is shown to reach a O(n2) complexity for simple aggregation operators
(e.g., maximum, minimum and average). For specific contexts, even faster solu-
tions have been proposed, such as a sub-quadratic single-linkage method for low-
dimensional data [4], and a O(n log n) complete-linkage solution for Rd spaces
(d ≥ 1) with L1 and L∞ metrics [5]. We remark that these approaches do not
take into account the (pragmatic) possibility of having very expensive distance
computations, which is exactly the context we will focus on in this paper. When
some degree of approximation in the hierarchical clustering structure can be tol-
erated, several approximation approaches can be followed, which mainly try to
reduce the size of data: from data simple sampling methods to data aggregation
solutions, such as (i) grid-based clustering solutions for vectorial datasets [3],
and (ii) the data bubbles approach [1], which extends the grid-based approach to
non-vectorial data.

3 HAC with Enhanced Distance Management

The basic assumption of our method is that our distance function is a metric.
Then, the key idea is that from the exact distances of a limited number of
couples it is possible to derive useful approximated values for all object-to-object
distances. Such approximations can be easily updated at each iteration of the
HAC algorithm, and can be used to effectively limit the number of exact distance
computations needed along the whole process.

3.1 Distance Approximations

As basic means for estimating unknown distances, we propose to use the tri-
angular inequality, a property satisfied by all metrics: ∀a, b, p ∈ D : d(a, b) ≤
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d(a, p)+d(p, c), where d is a metric defined over a domain D. With some simple
math and exploiting the symmetry property of metrics, we can rewrite it as

∀a, b, p ∈ D : |d(p, a) − d(p, c)| ≤ d(a, b) ≤ d(p, a) + d(p, c) (1)

Now, assuming to know all |D| distances d(p, a) for some fixed element p ∈ D,
which we will call pivot, the above formula can be directly used to provide a
bounding interval for the distance between any couple (a, b) of objects. Hence-
forth, we will refer to such bounding intervals as approximated distances or simply
approximations. In particular, we notice that if some object a is very close to the
pivot, the d(p, a) values in (1) will be very small, and therefore the approximation
of any distance d(a, b) from a will be very tight.

In our approach, the computation of all object-to-object distances, usually
performed at the beginning of HAC algorithms, is replaced by (i) the computa-
tion of the |D| exact distances relative to a randomly chosen pivot, and (ii) the
approximation of all other distances by following the method outlined above.

3.2 Enhanced Distance Management

The method shown in the previous section can be used to provide an initial
set of approximations aimed at replacing as much as possible the full matrix
of distances. In the following we will describe: (i) how such approximations can
be used to save exact distance computations in the couple selection phase (step
3 in Figure 1); (ii) how they can be composed to derive approximations for a
newly created cluster (steps 6–7); and (iii) how to exploit them also in the on
demand computation of exact distances between compound clusters, when they
are required in the couple selection phase.

Enhanced Couple Selection. Both the single- and complete-linkage algo-
rithms, at each iteration find the couple of clusters with minimal distance, and
merge them. A simple method for searching such couple exploiting the approxi-
mated distances, is the following:

1. Select the couple (a, b) which has the lowest-bounded approximation;
2. if the approximation is perfect
3. then return (a, b);
4. else compute the exact d(a, b) and return to step 1;

Essentially, a two-steps selection is performed: a first selection of the most
promising candidate couple is performed by means of the known approxima-
tions; if the best approximation is perfect, then all other couples certainly have
an equal or greater distance, and therefore we can safely choose the selected
couple for the merging phase; otherwise, another step is necessary, i.e., the exact
distance of the couple needs to be computed and checked to be still the best
candidate. The last test is implicitly performed by immediately repeating the
selection step.
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Deriving New Approximations. When two clusters are merged, all distances
from the resulting new cluster have to be computed, exact or approximated, so
that it can be considered in the next iterations of the selection-merging process.
Analogously to the case of exact distances, the approximations for the new clus-
ter can be derived by aggregating the already known approximations of the two
clusters it originated from. In particular, we exploit a simple property of the max
and min aggregation operators, that are used in the single- and complete-linkage
HAC algorithms1:

Proposition 1. Let x, y, l1, u1, l2, u2 ∈ R, x ∈ [l1, u1] and y ∈ [l2, u2]. Then:

min{x, y} ∈ [min{l1, l2},min{u1, u2}] (2)
max{x, y} ∈ [max{l1, l2},max{u1, u2}] (3)

In the single-linkage algorithm, the distance between two clusters c and c′ is
computed as the minimum of the object-to-object distances between elements
of the two clusters, i.e., d(c, c′) = mina∈c,b∈c′ d(a, b). If c is obtained by merg-
ing clusters c1 and c2, then we can write d(c, c′) = mina∈c1∪c2,b∈c′ d(a, b), and
therefore d(c, c′) = min{d(c1, c

′), d(c2, c
′)}. This property, together with (2),

provides a straightforward means for approximating all distances d(c, c′) from
c, given that we know an approximation for both its components c1 and c2.
A completely symmetrical reasoning can be repeated for the complete-linkage
algorithm, which makes use of inequality (3).

Enhanced Distance Computation. In the (enhanced) selection step it is of-
ten necessary to compute the exact distance between two clusters. That happens
whenever the best candidate couple found is associated with only an approxi-
mated distance. The trivial way to do it, consists in computing all distances
between each object in the first cluster and each object in the second one and
aggregating them with the proper operator (min or max). An obvious drawback
of this solution is that it easily leads to compute all |D|·(|D|−1)

2 object-to-object
distances, which is exactly what we wanted to avoid. A surprisingly effective
enhancement can be obtained by exploiting the following simple fact:

Proposition 2. Let c1, c2, c
′ be three distinct clusters and c = c1∪c2, d(c1, c

′) ∈
[l1, u1], d(c2, c

′) ∈ [l2, u2]. If u1 ≤ l2, then: (i) in the single-linkage algorithm it
holds that d(c, c′) = d(c1, c

′), and (ii) in the complete-linkage d(c, c′) = d(c2, c
′).

The basic idea is to compute the distance between compound clusters by
recursively analyzing their components (i.e., the two sub-clusters they originated
from), until we reach simple objects. At each step of the recursion, the above
property allows to prune unnecessary distance computations. The process for
single-linkage HAC can be summarized as in Figure 2. If the clusters to compare

1 Due to space limits, all the proofs are omitted here, and can be found in [8].
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Algorithm: EDC
Input: two clusters a and b
Output: the exact distance d(a, b)

1. if a and b contain only one object then Stop and return d(a, b);
2. if a contains only one object then Swap a and b;
3. Let a1, a2 be the clusters which compose a, i.e., a = a1 ∪ a2;
4. Let d(a1, b) ∈ [l1, u1] and d(a2, b) ∈ [l2, u2];
5. if l1 > l2 then Swap a1 and a2;
6. d1 := EDC(a1, b);
7. if d1 < l2 then Stop and return d1;
8. d2 := EDC(a2, b);
9. return min{d1, d2};

Fig. 2. Enhanced Distance Computation (EDC) for single-linkage HAC

contain single objects, then the algorithm simply computes their distance (step
1), otherwise it breaks down one of the compound clusters into its components
(steps 2–4), and recursively analyzes them. In the analysis of sub-components,
priority is given to the most promising one, i.e., that with the smaller lower bound
distance (step 5), to the purpose of maximizing the pruning opportunities offered
by Proposition 2. Step 7 implements that by avoiding to compute the distance
for the less promising component when it is not strictly necessary.

The complete-linkage version of the algorithm is essentially the same, and can
be obtained by just modifying the conditions of step 5 and 7 with, respectively,
(u1 < u2) and (d1 > u2), and by replacing min with max in step 9.

3.3 Selecting Pivots

As we noticed in Section 3.1, the approximations computed before the clustering
process can have variable tightness. In particular, the approximations for objects
close to the pivot will be tight, while the others will be looser. A natural extension
of the method consists in choosing more than one pivot, so that a larger number
of objects will have a pivot near to them, and therefore a larger quantity of
approximated distances will result tight. The expected consequence is that the
pruning strategies described in the previous sections will be more effective.

Choosing several pivots, we obtain several approximations for the same dis-
tance – one for each pivot – so they need to be composed together in some way.
The approximation computed by means of each pivot represents a constraint
that the real distance must satisfy. Therefore, the composition of approxima-
tions corresponds to the conjunction of the constraints they represent, which is
simply implemented by intersecting of the available approximations.

A more difficult problem is the choice of the pivots. While a simple, repeated
random choice would be a possible solution, it provides no guarantee on the
results. On the contrary, assuming that a dataset is really composed of a number
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Algorithm: Pivots Selection
Input: a dataset D and an integer n
Output: a set P of n pivots

1. Randomly select an object p0 ∈ D;
2. P := {p0};
3. while |P | < n do
4. p = arg maxo∈D{minp′∈P d(p′, o)};
5. P := P ∪ {p};
6. return P ;

Fig. 3. Algorithm for selecting the initial pivots

of clusters, an optimal choice for pivots would assign at least one pivot to each
cluster. The key idea of our pivot selection heuristics is the following: assuming
to have very well defined clusters in our data, each point is expected to be
far from the objects of other clusters, at least if compared with the distance
from other objects in the same cluster. Therefore, given a set of pivots, we can
reasonably search a new good pivot, i.e., a pivot which belongs to an uncovered
cluster, among those objects which are far from all existing pivots. These are
essentially the same ideas applied in [6], where a similar approach has been used
for approximated clustering. Figure 3 shows our pivot selection method.

The very first pivot is chosen randomly (steps 1–2), while the following ones
are chosen as mentioned above. In particular, the furthest object from the exist-
ing set of pivots is selected, i.e., the object which maximizes the distance from
the closest pivot (step 4). This simple algorithm seems to capture reasonably
well the cluster structure of data, at least for clean-cut clusters, as indicated by
the property proven below.

Definition 1 (δ-separateness). Given a set of objects D and a distance d(),
D is called δ-separated if it can be split into at least two clusters, such that the
following holds: ∀a, b, a′, b′ ∈ D : if a and b belong to the same cluster while a′

and b′ do not, then d(a′, b′) > δ · d(a, b).

Essentially, δ-separateness requires that the minimum distance between clus-
ters is at least δ times larger than the maximum diameter of clusters.

Proposition 3. Let D be a 1-separated dataset composed of n clusters, and
k ≥ n. Then, PivotsSelection(D,k) returns at least one object from each cluster.

4 Performance Evaluation

In this section we provide some experimental and theoretical evaluations of the
performances of the HAC algorithms with enhanced distance management de-
scribed in this work.
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4.1 Theoretical Evaluation

While any realistic context usually shows some kind of irregularity, such as noise
(i.e., objects that do not clearly belong to any cluster) and dispersion (i.e., largely
dispersed clusters, possibly without clear boundaries), it is useful to have some
theoretical estimation of performances also on ideal datasets: on one hand, it
provides at least a comparison reference for empirical studies; on the other hand,
it helps to understand where are the weak and strong points of the algorithm
analyzed. In this section, we provide one of such theoretical hints.

First of all, we introduce a slight variant of HAC algorithms:

Definition 2 (k-HAC). Given a HAC algorithm and a parameter k, we define
the corresponding k-HAC algorithm as its variant which stops the aggregation
process when k clusters are obtained. That corresponds to replace step 2 in the
general HAC algorithm (Figure 1) with the following: while |C| > k do.

In practice, such generalization is quite reasonable, since usually it is easy to
provide some a priori lower bound on the number of clusters we are interested
in – obviously at least 2, but often it is much larger.

Proposition 4. Given a 3-separated dataset D with n clusters, and a parameter
k ≥ n, the execution of an optimized k-HAC algorithm over D with k initial
pivots requires O(N2

1 + · · · + N2
k ) object-to-object distance computations, where

(Ni)i=1,...,k are the sizes of the k top level clusters returned by the algorithm.

In summary, when clusters are very compact our pruning strategy allows to
limit the distance computations just to couples within the same cluster. That
results in a considerable reduction factor, as stated by the following:

Corollary 1. Under the assumptions of Proposition 4, if k = n and the clus-
ters in D have balanced sizes (i.e., ∀i : Ni ∼ N/k), then the k-HAC algorithm
with enhanced distance computation requires a fraction O(1/k) of the distances
required by the simple HAC algorithm.

We notice that the above analysis does not take in consideration the prun-
ing capabilities of the Enhanced Distance Computation algorithm. As the next
section will show, in some cases this second component allows to obtain much
larger reduction factors.

4.2 Experimental Evaluation

In order to study the effectiveness of our pruning heuristics, and to understand
which factors can affect it, we performed several experiments over datasets of
different nature with corresponding distance functions:

– 2D points: the dataset contains points in the R2 space, and the standard
Euclidean distance is applied. Data were randomly generated into 10 spher-
ical, normally-distributed clusters with a 5% of random noise. Although Eu-
clidean metrics are not expensive, this kind of metric space provides a good
example of low-dimensional data, so it is useful to evaluate the pruning power
of our heuristics on it and to compare the results with the other data types.
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– Trajectories: each element describes the movement of an object in a bi-
dimensional space, and is represented as a sequence of points in space-time.
The distance between two objects is defined as the average Euclidean dis-
tance between them. Data were synthesized by means of a random generator,
which created 10 clusters of trajectories (see [7] for the details).

For each data domain, datasets of different sizes were generated (from 400
to 3200 objects) and the single- and complete-linkage versions of a 10-HAC
algorithm were applied, with a variable number of pivots (from 4 to 48). Figure 4
depicts the results of our experiments for single-linkage, which are evaluated by
means of the ratio between the total number of distance computations required
by the basic HAC algorithms and the number of distances computed by their
enhanced version. We will refer to such ratio as gain factor, and each value is
averaged over 16 runs. Due to space limitations, the results for the complete-
linkage algorithm are not reported here, since they are quite similar to the single-
linkage case. The interested reader can find them in [8], together with tests on
other datasets. We can summarize the results as it follows:

– For 2D data (Figure 4 left), a very high gain factor is obtained for all settings
of the parameters. In particular, the gain factor grows very quickly with the
size of the database, and the best results are obtained with the minimal
number of pivots. The latter fact essentially means that the pruning power
of the EDC procedure (Figure 2) is so high in this context, that only a very
small number of exact distances are needed to capture the structure of data,
and so the k|D| distances computed in the initialization phase (|D| for each
pivot) become a limitation to the performances.

– For trajectory data (Figure 4 right), the gain factor is moderately high, and
the enhanced HAC algorithms reduce the number of computed distances
of around an order of magnitude. In this contexts, we notice that the best
results are obtained with a number of pivots around 10–20, and both smaller
and higher values yield a decrease in performances.
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Fig. 4. Gain Factor of Single-linkage HAC on 2D and trajectory data
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Due to space limitations, no analysis of execution times is provided here.
We summarize our results as follows: with 2D data the gain in running times
is slightly negative, because the Euclidean metric is extremely cheap, and then,
even though the overhead of our heuristics results to be small, the distances
saved cannot compensate it; with other data, instead, the gain in running times
is almost identical to the gain factor, since the distances are more complex, and
saving even a few of them is enough to balance all the overhead.

5 Conclusions

In this paper we introduced an optimization technique for two popular hier-
archical clustering algorithms, and studied its potentialities and its limitations
by means of both theoretical and empirical means. Our optimization technique
tries to save as many distance computations as possible, which is particularly
important for contexts where distances are time-consuming, and we showed that
on reasonably dense datasets it is able to achieve good performances.

As future work, we plan (i) to perform a systematic study aimed at under-
standing more precisely which statistical properties of data influence the per-
formances of our pruning heuristics (as suggested in the previous section and
confirmed by additional tests in [8], dimensionality is one of them); (ii) to em-
pirically evaluate the pruning power of the heuristics over several real world
datasets, having different characteristics; and, finally, (iii) to extend the heuris-
tics to other variants of HAC and, if possible, to other clustering approaches.
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