Title | Relationship between External and Internal Workloads in Elite Soccer Players: Comparison between Rate of Perceived Exertion and Training Load |
Publication Type | Journal Article |
Year of Publication | 2019 |
Authors | Rossi, A, Perri, E, Pappalardo, L, Cintia, P, F Iaia, M |
Journal | Applied Sciences |
Volume | 9 |
Issue | 23 |
Pagination | 5174 |
Abstract | The use of machine learning (ML) in soccer allows for the management of a large amount of data deriving from the monitoring of sessions and matches. Although the rate of perceived exertion (RPE), training load (S-RPE), and global position system (GPS) are standard methodologies used in team sports to assess the internal and external workload; how the external workload affects RPE and S-RPE remains still unclear. This study explores the relationship between both RPE and S-RPE and the training workload through ML. Data were recorded from 22 elite soccer players, in 160 training sessions and 35 matches during the 2015/2016 season, by using GPS tracking technology. A feature selection process was applied to understand which workload features influence RPE and S-RPE the most. Our results show that the training workloads performed in the previous week have a strong effect on perceived exertion and training load. On the other hand, the analysis of our predictions shows higher accuracy for medium RPE and S-RPE values compared with the extremes. These results provide further evidence of the usefulness of ML as a support to athletic trainers and coaches in understanding the relationship between training load and individual-response in team sports. |
URL | https://www.mdpi.com/2076-3417/9/23/5174/htm |
DOI | 10.3390/app9235174 |