Publications

You are here

Export 5 results:
[ Author(Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
R
G. Rossetti, Milli, L., Rinzivillo, S., Sirbu, A., Pedreschi, D., and Giannotti, F., NDlib: a python library to model and analyze diffusion processes over complex networks, International Journal of Data Science and Analytics, pp. 1–19, 2017.
G. Rossetti, Milli, L., Rinzivillo, S., Sirbu, A., Pedreschi, D., and Giannotti, F., NDlib: Studying Network Diffusion Dynamics, in IEEE International Conference on Data Science and Advanced Analytics, DSA, Tokyo, 2017.
G. Rossetti, Pappalardo, L., and Pedreschi, D., Measuring tie strength in multidimensional networks, in SEDB 2013, 2013.
G. Rossetti, Guidotti, R., Miliou, I., Pedreschi, D., and Giannotti, F., A supervised approach for intra-/inter-community interaction prediction in dynamic social networks, Social Network Analysis and Mining, vol. 6, p. 86, 2016.
G. Rossetti, Pedreschi, D., and Giannotti, F., Node-centric Community Discovery: From static to dynamic social network analysis, Online Social Networks and Media, vol. 3, pp. 32–48, 2017.
G. Rossetti, Berlingerio, M., and Giannotti, F., Scalable Link Prediction on Multidimensional Networks, in ICDM Workshops, Vancouver, 2011, pp. 979-986.
A. Rossi, Pappalardo, L., Cintia, P., F Iaia, M., Fernàndez, J., and Medina, D., Effective injury forecasting in soccer with GPS training data and machine learning, PloS one, vol. 13, p. e0201264, 2018.
A. Rossi, Perri, E., Pappalardo, L., Cintia, P., and F Iaia, M., Relationship between External and Internal Workloads in Elite Soccer Players: Comparison between Rate of Perceived Exertion and Training Load, Applied Sciences, vol. 9, p. 5174, 2019.
S. Ruggieri, Introduction to the special issue on Artificial Intelligence for Society and Economy, Intelligenza Artificiale, vol. 9, pp. 23–23, 2015.
S. Ruggieri, Hajian, S., Kamiran, F., and Zhang, X., Anti-discrimination analysis using privacy attack strategies, in Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2014.
S. Ruggieri, Using t-closeness anonymity to control for non-discrimination., Trans. Data Privacy, vol. 7, pp. 99–129, 2014.
S. Ruggieri and Mesnard, F., Typing Linear Constraints for Moding CLP() Programs, in SAS, 2008, pp. 128-143.
S. Ruggieri, Eirinakis, P., Subramani, K., and Wojciechowski, P., On the complexity of quantified linear systems, Theoretical Computer Science, vol. 518, pp. 128–134, 2014.
S. Ruggieri, Data Anonymity Meets Non-discrimination, in Data Mining Workshops (ICDMW), 2013 IEEE 13th International Conference on, 2013.
S. Ruggieri, Learning from polyhedral sets, in Proceedings of the Twenty-Third international joint conference on Artificial Intelligence, 2013.
S. Ruggieri and Turini, F., A KDD process for discrimination discovery, in Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2016.
S. Ruggieri, Enumerating Distinct Decision Trees, in International Conference on Machine Learning, 2017.
S
V. D. P. Servedio, Caminiti, S., Gravino, P., Loreto, V., Sirbu, A., and Tria, F., Large Scale Engagement Through Web-Gaming and Social Computations, in Participatory Sensing, Opinions and Collective Awareness, Springer, 2017, pp. 237–254.
M. Setzu and Atzori, M., SPARQL Queries over Source Code, in 2016 IEEE Tenth International Conference on Semantic Computing (ICSC), 2016.
A. Sirbu, Giannotti, F., Pedreschi, D., and Kertész, J., Public opinion and Algorithmic bias, ERCIM News, 2019.
A. Sirbu, Loreto, V., Servedio, V. D. P., and Tria, F., Cohesion, consensus and extreme information in opinion dynamics, Advances in Complex Systems, vol. 16, p. 1350035, 2013.
A. Sirbu, Ruskin, H. J., and Crane, M., Stages of Gene Regulatory Network Inference: the Evolutionary Algorithm Role, in Evolutionary Algorithms, InTech, 2011.
A. Sirbu, Ruskin, H. J., and Crane, M., Regulatory network modelling: Correlation for structure and parameter optimisation, Proceedings of The IASTED Technology Conferences (International Conference on Computational Bioscience), Cambridge, Massachusetts, pp. 3473–3481, 2010.
A. Sirbu, Andrienko, G., Andrienko, N., Boldrini, C., Conti, M., Giannotti, F., Guidotti, R., Bertoli, S., Kim, J., Muntean, C. Ioana, and others, Human migration: the big data perspective, International Journal of Data Science and Analytics, pp. 1–20, 2020.
A. Sirbu, Loreto, V., Servedio, V. D. P., and Tria, F., Opinion dynamics with disagreement and modulated information, Journal of Statistical Physics, pp. 1–20, 2013.

Pages