Publications

You are here

Export 5 results:
[ Author(Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
R
S. Ruggieri, Hajian, S., Kamiran, F., and Zhang, X., Anti-discrimination analysis using privacy attack strategies, in Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2014.
S. Ruggieri, Using t-closeness anonymity to control for non-discrimination., Trans. Data Privacy, vol. 7, pp. 99–129, 2014.
S. Ruggieri, Eirinakis, P., Subramani, K., and Wojciechowski, P., On the complexity of quantified linear systems, Theoretical Computer Science, vol. 518, pp. 128–134, 2014.
S. Ruggieri and Mesnard, F., Typing Linear Constraints for Moding CLP() Programs, in SAS, 2008, pp. 128-143.
S. Ruggieri, Data Anonymity Meets Non-discrimination, in Data Mining Workshops (ICDMW), 2013 IEEE 13th International Conference on, 2013.
S. Ruggieri, Learning from polyhedral sets, in Proceedings of the Twenty-Third international joint conference on Artificial Intelligence, 2013.
S. Ruggieri and Turini, F., A KDD process for discrimination discovery, in Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2016.
S. Ruggieri, Enumerating Distinct Decision Trees, in International Conference on Machine Learning, 2017.
S. Ruggieri, Introduction to the special issue on Artificial Intelligence for Society and Economy, Intelligenza Artificiale, vol. 9, pp. 23–23, 2015.
A. Rossi, Pappalardo, L., Cintia, P., F Iaia, M., Fernàndez, J., and Medina, D., Effective injury forecasting in soccer with GPS training data and machine learning, PloS one, vol. 13, p. e0201264, 2018.
A. Rossi, Pedreschi, D., Clifton, D. A., and Morelli, D., Error Estimation of Ultra-Short Heart Rate Variability Parameters: Effect of Missing Data Caused by Motion Artifacts, Sensors, vol. 20, p. 7122, 2020.
A. Rossi, Perri, E., Pappalardo, L., Cintia, P., and F Iaia, M., Relationship between External and Internal Workloads in Elite Soccer Players: Comparison between Rate of Perceived Exertion and Training Load, Applied Sciences, vol. 9, p. 5174, 2019.
G. Rossetti, Guidotti, R., Pennacchioli, D., Pedreschi, D., and Giannotti, F., Interaction Prediction in Dynamic Networks exploiting Community Discovery, in International conference on Advances in Social Network Analysis and Mining, ASONAM 2015, Paris, France, 2015.
G. Rossetti, Citraro, S., and Milli, L., Conformity: A Path-Aware Homophily Measure for Node-Attributed Networks, arXiv preprint arXiv:2012.05195, 2020.
G. Rossetti, Pappalardo, L., Kikas, R., Pedreschi, D., Giannotti, F., and Dumas, M., Community-centric analysis of user engagement in Skype social network, in International conference on Advances in Social Network Analysis and Mining, Paris, France, 2015.
G. Rossetti, Milli, L., Citraro, S., and Morini, V., UTLDR: an agent-based framework for modeling infectious diseases and public interventions, arXiv preprint arXiv:2011.05606, 2020.
G. Rossetti, Pappalardo, L., Pedreschi, D., and Giannotti, F., Tiles: an online algorithm for community discovery in dynamic social networks, Machine Learning, vol. 106, pp. 1213–1241, 2017.
G. Rossetti, Citraro, S., and Milli, L., Conformity: a Path-Aware Homophily measure for Node-Attributed Networks, IEEE Intelligent SystemsIEEE Intelligent Systems, pp. 1 - 1, 2021.
G. Rossetti, Berlingerio, M., and Giannotti, F., Link Prediction su Reti Multidimensionali, in Sistemi Evoluti per Basi di Dati - {SEBD} 2011, Proceedings of the Nineteenth Italian Symposium on Advanced Database Systems, Maratea, Italy, June 26-29, 2011, 2011.
G. Rossetti, Pappalardo, L., and Rinzivillo, S., A novel approach to evaluate community detection algorithms on ground truth, in 7th Workshop on Complex Networks, Dijon, France, 2016.
G. Rossetti, ANGEL: efficient, and effective, node-centric community discovery in static and dynamic networks, Applied Network Science, vol. 5, pp. 1–23, 2020.
G. Rossetti, Morini, V., and Pollacci, L., Capturing Political Polarization of Reddit Submissions in the Trump Era, in SEBD, 2020.
G. Rossetti, Exorcising the Demon: Angel, Efficient Node-Centric Community Discovery, in International Conference on Complex Networks and Their Applications, 2019.

Pages