Publications

You are here

2017
M. Atzmueller, Becker, M., Molino, A., Mueller, J., Peters, J., and Sirbu, A., Applications for Environmental Sensing in EveryAware, in Participatory Sensing, Opinions and Collective Awareness, Springer, 2017, pp. 135–155.
R. Pellungrini, Pratesi, F., and Pappalardo, L., Assessing Privacy Risk in Retail Data, in Personal Analytics and Privacy. An Individual and Collective Perspective - First International Workshop, PAP 2017, Held in Conjunction with ECML PKDD 2017, Skopje, Macedonia, September 18, 2017, Revised Selected Papers, 2017.
C. Panigutti, Tizzoni, M., Bajardi, P., Smoreda, Z., and Colizza, V., Assessing the use of mobile phone data to describe recurrent mobility patterns in spatial epidemic models, Royal Society open science, vol. 4, p. 160950, 2017.
B. Dong, Wang, H. Wendy, Monreale, A., Pedreschi, D., Giannotti, F., and Guo, W., Authenticated Outlier Mining for Outsourced Databases, IEEE Transactions on Dependable and Secure Computing, 2017.
R. Guidotti, Monreale, A., Nanni, M., Giannotti, F., and Pedreschi, D., Clustering Individual Transactional Data for Masses of Users, in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017.
R. Pellungrini, Pappalardo, L., Pratesi, F., and Monreale, A., A Data Mining Approach to Assess Privacy Risk in Human Mobility Data, ACM Trans. Intell. Syst. Technol., vol. 9, pp. 31:1–31:27, 2017.
F. Beltram, Giannotti, F., and Pedreschi, D., Data Science a Game-changer for Science and Innovation. G7 Academy, 2017.
L. Pappalardo and Simini, F., Data-driven generation of spatio-temporal routines in human mobility, Data Mining and Knowledge Discovery, 2017.
B. Furletti, Trasarti, R., Cintia, P., and Gabrielli, L., Discovering and Understanding City Events with Big Data: The Case of Rome, Information, vol. 8, p. 74, 2017.
B. Guidi, Michienzi, A., and Rossetti, G., Dynamic community analysis in decentralized online social networks, in European Conference on Parallel Processing, 2017.
A. Baroni, Conte, A., Patrignani, M., and Ruggieri, S., Efficiently Clustering Very Large Attributed Graphs, arXiv preprint arXiv:1703.08590, 2017.
P. Mukala, Cerone, A., and Turini, F., An empirical verification of a-priori learning models on mailing archives in the context of online learning activities of participants in free\libre open source software (FLOSS) communities, Education and Information Technologies, vol. 22, pp. 3207–3229, 2017.
S. Ruggieri, Enumerating Distinct Decision Trees, in International Conference on Machine Learning, 2017.
R. Guidotti and Coscia, M., On the Equivalence Between Community Discovery and Clustering, in International Conference on Smart Objects and Technologies for Social Good, 2017.
P. Gravino, Sirbu, A., Becker, M., Servedio, V. D. P., and Loreto, V., Experimental Assessment of the Emergence of Awareness and Its Influence on Behavioral Changes: The Everyaware Lesson, in Participatory Sensing, Opinions and Collective Awareness, Springer, 2017, pp. 337–362.
R. Pellungrini, Pappalardo, L., Pratesi, F., and Monreale, A., Fast Estimation of Privacy Risk in Human Mobility Data. 2017.
G. Rossetti, Milli, L., Giannotti, F., and Pedreschi, D., Forecasting success via early adoptions analysis: A data-driven study, PloS one, vol. 12, p. e0189096, 2017.
L. Pollacci, Guidotti, R., Rossetti, G., Giannotti, F., and Pedreschi, D., The Fractal Dimension of Music: Geography, Popularity and Sentiment Analysis, in International Conference on Smart Objects and Technologies for Social Good, 2017.
L. Candela, Manghi, P., Giannotti, F., Grossi, V., and Trasarti, R., HyWare: a HYbrid Workflow lAnguage for Research E-infrastructures, D-Lib Magazine, vol. 23, 2017.
M. Nanni, Kotthoff, L., Guidotti, R., O'Sullivan, B., and Pedreschi, D., ICON Loop Carpooling Show Case, Data Mining and Constraint Programming: Foundations of a Cross-Disciplinary Approach, vol. 10101, p. 310, 2017.
C. Bessiere, De Raedt, L., Guns, T., Kotthoff, L., Nanni, M., Nijssen, S., O'Sullivan, B., Paparrizou, A., Pedreschi, D., and Simonis, H., The Inductive Constraint Programming Loop, IEEE Intelligent Systems, 2017.
M. Nanni, Nijssen, S., O'Sullivan, B., Paparrizou, A., Pedreschi, D., and Simonis, H., The Inductive Constraint Programming Loop, Data Mining and Constraint Programming: Foundations of a Cross-Disciplinary Approach, vol. 10101, p. 303, 2017.

Pages