Publications

You are here

Book Chapter
M. Atzmueller, Becker, M., Molino, A., Mueller, J., Peters, J., and Sirbu, A., Applications for Environmental Sensing in EveryAware, in Participatory Sensing, Opinions and Collective Awareness, Springer, 2017, pp. 135–155.
R. Cazabet and Rossetti, G., Challenges in community discovery on temporal networks, in Temporal Network Theory, Springer, 2019, pp. 181–197.
M. Wachowicz, Ligtenberg, A., Renso, C., and Gürses, S. F., Characterising the Next Generation of Mobile Applications Through a Privacy-Aware Geographic Knowledge Discovery Process, in Mobility, Data Mining and Privacy, Mobility, Privacy, and Geography: a Knowledge Discovery vision, 2008, pp. 39-72.
V. Grossi, Pedreschi, D., and Turini, F., Data Mining and Constraints: An Overview, in Data Mining and Constraint Programming, Springer International Publishing, 2016, pp. 25–48.
D. Bacciu, Bellandi, A., Furletti, B., Grossi, V., and Romei, A., Discovering Strategic Behaviour in Multi- Agent Scenarios by Ontology-Driven Mining, in Advances in Robotics, Automation and Control, 2008.
D. Pedreschi, Ruggieri, S., and Turini, F., The discovery of discrimination, in Discrimination and privacy in the information society, Springer, 2013, pp. 91–108.
A. Sirbu, Crane, M., and Ruskin, H. J., EGIA–Evolutionary Optimisation of Gene Regulatory Networks, an Integrative Approach, in Complex Networks V, Springer International Publishing, 2014, pp. 217–229.
F. Turini, Baglioni, M., Furletti, B., and Rinzivillo, S., Examples of Integration of Induction and Deduction in Knowledge Discovery, in Reasoning, Action and Interaction in AI Theories and Systems, vol. 4155, 2006, pp. 307-326.
P. Gravino, Sirbu, A., Becker, M., Servedio, V. D. P., and Loreto, V., Experimental Assessment of the Emergence of Awareness and Its Influence on Behavioral Changes: The Everyaware Lesson, in Participatory Sensing, Opinions and Collective Awareness, Springer, 2017, pp. 337–362.
R. Guidotti, Coscia, M., Pedreschi, D., and Pennacchioli, D., Going Beyond GDP to Nowcast Well-Being Using Retail Market Data, in Advances in Network Science, Springer International Publishing, 2016, pp. 29–42.
G. Amato, Candela, L., Castelli, D., Esuli, A., Falchi, F., Gennaro, C., Giannotti, F., Monreale, A., Nanni, M., Pagano, P., Pappalardo, L., Pedreschi, D., Pratesi, F., Rabitti, F., Rinzivillo, S., Rossetti, G., Ruggieri, S., Sebastiani, F., and Tesconi, M., How Data Mining and Machine Learning Evolved from Relational Data Base to Data Science, in A Comprehensive Guide Through the Italian Database Research Over the Last 25 Years, S. Flesca, Greco, S., Masciari, E., and Saccà, D., Eds. Cham: Springer International Publishing, 2018, pp. 287 - 306.
S. Rinzivillo, Turini, F., Bogorny, V., Körner, C., Kuijpers, B., and May, M., Knowledge Discovery from Geographical Data, in Mobility, Data Mining and Privacy, 2008, pp. 243-265.
V. D. P. Servedio, Caminiti, S., Gravino, P., Loreto, V., Sirbu, A., and Tria, F., Large Scale Engagement Through Web-Gaming and Social Computations, in Participatory Sensing, Opinions and Collective Awareness, Springer, 2017, pp. 237–254.
H. Hosni, Masserotti, M. V., and Renso, C., Maximum Entropy Reasoning for GIS, 2006.
M. Berlingerio, Bonchi, F., Curcio, M., Giannotti, F., and Turini, F., Mining Clinical, Immunological, and Genetic Data of Solid Organ Transplantation, in Biomedical Data and Applications, 2009, pp. 211-236.
F. Giannotti and Pedreschi, D., Mobility, Data Mining and Privacy: A Vision of Convergence, in Mobility, Data Mining and Privacy, 2008, pp. 1-11.
M. Nanni, Trasarti, R., Cintia, P., Furletti, B., Renso, C., Gabrielli, L., Rinzivillo, S., and Giannotti, F., Mobility Profiling, in Data Science and Simulation in Transportation Research, IGI Global, 2014, pp. 1-29.
A. Sirbu, Loreto, V., Servedio, V. D. P., and Tria, F., Opinion dynamics: models, extensions and external effects, in Participatory Sensing, Opinions and Collective Awareness, Springer, 2017, pp. 363–401.
V. Grossi, Guns, T., Monreale, A., Nanni, M., and Nijssen, S., Partition-Based Clustering Using Constraint Optimization, in Data Mining and Constraint Programming - Foundations of a Cross-Disciplinary Approach, Springer International Publishing, 2016, pp. 282–299.

Pages